Open Access
November 2010 Second order ancillary: A differential view from continuity
Ailana M. Fraser, D.A.S. Fraser, Ana-Maria Staicu
Bernoulli 16(4): 1208-1223 (November 2010). DOI: 10.3150/10-BEJ248
Abstract

Second order approximate ancillaries have evolved as the primary ingredient for recent likelihood development in statistical inference. This uses quantile functions rather than the equivalent distribution functions, and the intrinsic ancillary contour is given explicitly as the plug-in estimate of the vector quantile function. The derivation uses a Taylor expansion of the full quantile function, and the linear term gives a tangent to the observed ancillary contour. For the scalar parameter case, there is a vector field that integrates to give the ancillary contours, but for the vector case, there are multiple vector fields and the Frobenius conditions for mutual consistency may not hold. We demonstrate, however, that the conditions hold in a restricted way and that this verifies the second order ancillary contours in moderate deviations. The methodology can generate an appropriate exact ancillary when such exists or an approximate ancillary for the numerical or Monte Carlo calculation of $p$-values and confidence quantiles. Examples are given, including nonlinear regression and several enigmatic examples from the literature.

References

1.

[1] Andrews, D.F., Fraser, D.A.S. and Wong, A. (2005). Computation of distribution functions from likelihood information near observed data. J. Statist. Plann. Inference 134 180–193. MR2146092 1066.62021 10.1016/j.jspi.2003.12.021[1] Andrews, D.F., Fraser, D.A.S. and Wong, A. (2005). Computation of distribution functions from likelihood information near observed data. J. Statist. Plann. Inference 134 180–193. MR2146092 1066.62021 10.1016/j.jspi.2003.12.021

2.

[2] Barndorff-Nielsen, O.E. (1986). Inference on full or partial parameters based on the standardized log likelihood ratio. Biometrika 73 307–322. MR855891 0605.62020[2] Barndorff-Nielsen, O.E. (1986). Inference on full or partial parameters based on the standardized log likelihood ratio. Biometrika 73 307–322. MR855891 0605.62020

3.

[3] Barndorff-Nielsen, O.E. (1987). Discussion of “Parameter orthogonality and approximate conditional inference.” J. R. Stat. Soc. Ser. B Stat. Methodol. 49 18–20.[3] Barndorff-Nielsen, O.E. (1987). Discussion of “Parameter orthogonality and approximate conditional inference.” J. R. Stat. Soc. Ser. B Stat. Methodol. 49 18–20.

4.

[4] Berger, J.O. and Sun, D. (2008). Objective priors for the bivariate normal model. Ann. Statist. 36 963–982. MR2396821 1133.62014 10.1214/07-AOS501 euclid.aos/1205420525 [4] Berger, J.O. and Sun, D. (2008). Objective priors for the bivariate normal model. Ann. Statist. 36 963–982. MR2396821 1133.62014 10.1214/07-AOS501 euclid.aos/1205420525

5.

[5] Cakmak, S., Fraser, D.A.S. and Reid, N. (1994). Multivariate asymptotic model: Exponential and location approximations. Util. Math. 46 21–31. MR1301292 0814.62005[5] Cakmak, S., Fraser, D.A.S. and Reid, N. (1994). Multivariate asymptotic model: Exponential and location approximations. Util. Math. 46 21–31. MR1301292 0814.62005

6.

[6] Cheah, P.K., Fraser, D.A.S. and Reid, N. (1995). Adjustment to likelihood and densities: Calculating significance. J. Statist. Res. 29 1–13. MR1345317[6] Cheah, P.K., Fraser, D.A.S. and Reid, N. (1995). Adjustment to likelihood and densities: Calculating significance. J. Statist. Res. 29 1–13. MR1345317

7.

[7] Cox, D.R. (1980). Local ancillarity. Biometrika 67 279–286. MR581725 0434.62004 10.1093/biomet/67.2.279[7] Cox, D.R. (1980). Local ancillarity. Biometrika 67 279–286. MR581725 0434.62004 10.1093/biomet/67.2.279

8.

[8] Cox, D.R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference. J. R. Stat. Soc. Ser. B Stat. Methodol. 49 1–39. MR893334 0616.62006[8] Cox, D.R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference. J. R. Stat. Soc. Ser. B Stat. Methodol. 49 1–39. MR893334 0616.62006

9.

[9] Daniels, H.E. (1954). Saddle point approximations in statistics. Ann. Math. Statist. 25 631–650. MR66602 0058.35404 10.1214/aoms/1177728652 euclid.aoms/1177728652 [9] Daniels, H.E. (1954). Saddle point approximations in statistics. Ann. Math. Statist. 25 631–650. MR66602 0058.35404 10.1214/aoms/1177728652 euclid.aoms/1177728652

10.

[10] Fisher, R.A. (1925). Theory of statistical estimation. Proc. Camb. Phil. Soc. 22 700–725. 51.0385.01 10.1017/S0305004100009580[10] Fisher, R.A. (1925). Theory of statistical estimation. Proc. Camb. Phil. Soc. 22 700–725. 51.0385.01 10.1017/S0305004100009580

11.

[11] Fisher, R.A. (1934). Two new properties of mathematical likelihood. Proc. R. Soc. Lond. Ser. A 144 285–307. 60.1156.01 10.1098/rspa.1934.0050[11] Fisher, R.A. (1934). Two new properties of mathematical likelihood. Proc. R. Soc. Lond. Ser. A 144 285–307. 60.1156.01 10.1098/rspa.1934.0050

12.

[12] Fisher, R.A. (1935). The logic of inductive inference. J. R. Stat. Soc. Ser. B Stat. Methodol. 98 39–54. 61.1308.06 10.2307/2342435[12] Fisher, R.A. (1935). The logic of inductive inference. J. R. Stat. Soc. Ser. B Stat. Methodol. 98 39–54. 61.1308.06 10.2307/2342435

13.

[13] Fisher, R.A. (1956). Statistical Methods and Scientific Inference. Edinburgh: Oliver & Boyd.[13] Fisher, R.A. (1956). Statistical Methods and Scientific Inference. Edinburgh: Oliver & Boyd.

14.

[14] Fraser, D.A.S. (1979). Inference and Linear Models. New York: McGraw-Hill. MR535612 0455.62052[14] Fraser, D.A.S. (1979). Inference and Linear Models. New York: McGraw-Hill. MR535612 0455.62052

15.

[15] Fraser, D.A.S. (1993). Directional tests and statistical frames. Statist. Papers 34 213–236. MR1241598 10.1007/BF02925543 0776.62013[15] Fraser, D.A.S. (1993). Directional tests and statistical frames. Statist. Papers 34 213–236. MR1241598 10.1007/BF02925543 0776.62013

16.

[16] Fraser, D.A.S. (2003). Likelihood for component parameters. Biometrika 90 327–339. MR1986650 1035.62012 10.1093/biomet/90.2.327[16] Fraser, D.A.S. (2003). Likelihood for component parameters. Biometrika 90 327–339. MR1986650 1035.62012 10.1093/biomet/90.2.327

17.

[17] Fraser, D.A.S. (2004). Ancillaries and conditional inference, with discussion. Statist. Sci. 19 333–369. MR2140544 10.1214/088342304000000323 euclid.ss/1105714167  1100.62534[17] Fraser, D.A.S. (2004). Ancillaries and conditional inference, with discussion. Statist. Sci. 19 333–369. MR2140544 10.1214/088342304000000323 euclid.ss/1105714167  1100.62534

18.

[18] Fraser, D.A.S. and Reid, N. (1995). Ancillaries and third order significance. Util. Math. 47 33–53. MR1330888 0829.62006[18] Fraser, D.A.S. and Reid, N. (1995). Ancillaries and third order significance. Util. Math. 47 33–53. MR1330888 0829.62006

19.

[19] Fraser, D.A.S. and Reid, N. (2001). Ancillary information for statistical inference. In Empirical Bayes and Likelihood Inference (S.E. Ahmed and N. Reid, eds.) 185–207. New York: Springer. MR1855565 10.1007/978-1-4613-0141-7_12[19] Fraser, D.A.S. and Reid, N. (2001). Ancillary information for statistical inference. In Empirical Bayes and Likelihood Inference (S.E. Ahmed and N. Reid, eds.) 185–207. New York: Springer. MR1855565 10.1007/978-1-4613-0141-7_12

20.

[20] Fraser, D.A.S. and Reid, N. (2002). Strong matching for frequentist and Bayesian inference. J. Statist. Plann. Inference 103 263–285. MR1896996 1005.62005 10.1016/S0378-3758(01)00225-7[20] Fraser, D.A.S. and Reid, N. (2002). Strong matching for frequentist and Bayesian inference. J. Statist. Plann. Inference 103 263–285. MR1896996 1005.62005 10.1016/S0378-3758(01)00225-7

21.

[21] Fraser, D.A.S., Reid, N., Marras, E. and Yi, G.Y. (2010). Default priors for Bayes and frequentist inference. J. R. Stat. Soc. Ser. B Stat. Methodol. To appear. 1411.62070 10.1111/j.1467-9868.2010.00750.x[21] Fraser, D.A.S., Reid, N., Marras, E. and Yi, G.Y. (2010). Default priors for Bayes and frequentist inference. J. R. Stat. Soc. Ser. B Stat. Methodol. To appear. 1411.62070 10.1111/j.1467-9868.2010.00750.x

22.

[22] Fraser, D.A.S., Reid, N. and Wu, J. (1999). A simple general formula for tail probabilities for Bayes and frequentist inference. Biometrika 86 249–264. MR1705367 0932.62003 10.1093/biomet/86.2.249[22] Fraser, D.A.S., Reid, N. and Wu, J. (1999). A simple general formula for tail probabilities for Bayes and frequentist inference. Biometrika 86 249–264. MR1705367 0932.62003 10.1093/biomet/86.2.249

23.

[23] Fraser, D.A.S. and Rousseau, J. (2008). Studentization and deriving accurate p-values. Biometrika 95 1–16. MR2409711 05563374 10.1093/biomet/asm093[23] Fraser, D.A.S. and Rousseau, J. (2008). Studentization and deriving accurate p-values. Biometrika 95 1–16. MR2409711 05563374 10.1093/biomet/asm093

24.

[24] Fraser, D.A.S., Wong, A. and Wu, J. (1999). Regression analysis, nonlinear or nonnormal: Simple and accurate p-values from likelihood analysis. J. Amer. Statist. Assoc. 94 1286–1295. MR1731490 0998.62059 10.2307/2669942[24] Fraser, D.A.S., Wong, A. and Wu, J. (1999). Regression analysis, nonlinear or nonnormal: Simple and accurate p-values from likelihood analysis. J. Amer. Statist. Assoc. 94 1286–1295. MR1731490 0998.62059 10.2307/2669942

25.

[25] Lugannani, R. and Rice, S. (1980). Saddlepoint approximation for the distribution of the sum of independent random variables. Adv. in Appl. Probab. 12 475–490. MR569438 0425.60042 10.2307/1426607[25] Lugannani, R. and Rice, S. (1980). Saddlepoint approximation for the distribution of the sum of independent random variables. Adv. in Appl. Probab. 12 475–490. MR569438 0425.60042 10.2307/1426607

26.

[26] McCullagh, P. (1984). Local sufficiency. Biometrika 71 233–244. MR767151 0573.62026 10.1093/biomet/71.2.233[26] McCullagh, P. (1984). Local sufficiency. Biometrika 71 233–244. MR767151 0573.62026 10.1093/biomet/71.2.233

27.

[27] McCullagh, P. (1992). Conditional inference and Cauchy models. Biometrika 79 247–259. MR1185127 0753.62002 10.1093/biomet/79.2.247[27] McCullagh, P. (1992). Conditional inference and Cauchy models. Biometrika 79 247–259. MR1185127 0753.62002 10.1093/biomet/79.2.247

28.

[28] Reid, N. and Fraser, D.A.S. (2010). Mean likelihood and higher order inference. Biometrika 97. To appear. MR2594424 1183.62041 10.1093/biomet/asq001[28] Reid, N. and Fraser, D.A.S. (2010). Mean likelihood and higher order inference. Biometrika 97. To appear. MR2594424 1183.62041 10.1093/biomet/asq001

29.

[29] Severini, T.A. (2001). Likelihood Methods in Statistics. Oxford: Oxford Univ. Press. MR1854870 0984.62002[29] Severini, T.A. (2001). Likelihood Methods in Statistics. Oxford: Oxford Univ. Press. MR1854870 0984.62002
Copyright © 2010 Bernoulli Society for Mathematical Statistics and Probability
Ailana M. Fraser, D.A.S. Fraser, and Ana-Maria Staicu "Second order ancillary: A differential view from continuity," Bernoulli 16(4), 1208-1223, (November 2010). https://doi.org/10.3150/10-BEJ248
Published: November 2010
Vol.16 • No. 4 • November 2010
Back to Top