Open Access
November 2010 Frontier estimation and extreme value theory
Abdelaati Daouia, Jean-Pierre Florens, Léopold Simar
Bernoulli 16(4): 1039-1063 (November 2010). DOI: 10.3150/10-BEJ256

Abstract

In this paper, we investigate the problem of nonparametric monotone frontier estimation from the perspective of extreme value theory. This enables us to revisit the asymptotic theory of the popular free disposal hull estimator in a more general setting, to derive new and asymptotically Gaussian estimators and to provide useful asymptotic confidence bands for the monotone boundary function. The finite-sample behavior of the suggested estimators is explored via Monte Carlo experiments. We also apply our approach to a real data set based on the production activity of the French postal services.

Citation

Download Citation

Abdelaati Daouia. Jean-Pierre Florens. Léopold Simar. "Frontier estimation and extreme value theory." Bernoulli 16 (4) 1039 - 1063, November 2010. https://doi.org/10.3150/10-BEJ256

Information

Published: November 2010
First available in Project Euclid: 18 November 2010

zbMATH: 1207.62112
MathSciNet: MR2759168
Digital Object Identifier: 10.3150/10-BEJ256

Keywords: Conditional quantile , Extreme values , Monotone boundary , production frontier

Rights: Copyright © 2010 Bernoulli Society for Mathematical Statistics and Probability

Vol.16 • No. 4 • November 2010
Back to Top