VOL. 1 · NO. 1-2 | March 1995
 
VIEW ALL ABSTRACTS +
Front Matter
Bernoulli 1 (1-2), (March 1995) Open Access
Bernoulli 1 (1-2), (March 1995) Open Access
Introduction
David G. Kendall
Bernoulli 1 (1-2), 1-2, (March 1995) Open Access
Articles
Julia E. Kelsall, Peter J. Diggle
Bernoulli 1 (1-2), 3-16, (March 1995) Open Access
KEYWORDS: cross-validation, epidemiology, kernel density estimation, smoothing parameters
Bo Martin Bibby, Michael Sørensen
Bernoulli 1 (1-2), 17-39, (March 1995) Open Access
KEYWORDS: Discrete-time sampling, inference for diffusion processes, optimality, quasi-likelihood, simulation, Stochastic differential equation
Peter Hall, Prakash Patil
Bernoulli 1 (1-2), 41-58, (March 1995) Open Access
KEYWORDS: convergence rate, Density estimation, differentiability, dilation equation, kernel method, Nonparametric curve estimation, orthogonal series, regression, scaling function, smoothness, ‎wavelet
Richard D. Gill, Boris Y. Levit
Bernoulli 1 (1-2), 59-79, (March 1995) Open Access
KEYWORDS: lower bounds, nonparametric estimation, Parameter estimation, quadratic risk, semi-parametric models
Rabi N. Bhattacharya, Friedrich Götze
Bernoulli 1 (1-2), 81-123, (March 1995) Open Access
KEYWORDS: Diffusion processes, Gaussian limits, time-scales
Claudia Klüppelberg, Thomas Mikosch
Bernoulli 1 (1-2), 125-147, (March 1995) Open Access
KEYWORDS: functional central limit theorem, IBNR claims, Poisson clustering point process, Poisson shot noise process, risk reserve model
Hans Föllmer, Philip Protter, Albert N. Shiryayev
Bernoulli 1 (1-2), 149-169, (March 1995) Open Access
KEYWORDS: Dirichlet processes, Itô's formula, Local time, quadratic covariation, Stratonovich integral
Anton Wakolbinger
Bernoulli 1 (1-2), 171-189, (March 1995) Open Access
KEYWORDS: backward trees, branching populations, large time limits, Local extinction, Persistence, spatially inhomogeneous critical branching, superprocess limits
Peter Jagers
Bernoulli 1 (1-2), 191-200, (March 1995) Open Access
KEYWORDS: branching processes, Dependence, Population dynamics, renewal theory
Back to Top