Open Access
2014 Geometric properties of the Lupaş $q$-transform
Sofiya Ostrovska
Banach J. Math. Anal. 8(2): 139-145 (2014). DOI: 10.15352/bjma/1396640059

Abstract

The Lupaş $q$-transform emerges in the study of the limit $q$-Lupaş operator. This transform is closely connected to the theory of positive linear operators of approximation theory, the $q$-boson operator calculus, the methods of summation of divergent series, and other areas. Given $q\in (0,1), \;f\in C[0,1],$ the Lupaş $q$-transform of $f$ is defined by: $$(\Lambda_qf)(z):=\frac{1}{(-z;q)_\infty}\cdot\sum_{k=0}^\infty\frac{f(1-q^k)q^{k(k-1)/2}} {(q;q)_k} z^k,$$ where $$(a;q)_k:=\prod_{j=0}^{k-1}\left(1-aq^j\right),\; (a;q)_\infty:=\prod_{j=0}^{\infty}\left(1-aq^j\right),\;\;k\in {\Bbb N}_0,\;a\in {\Bbb C}.$$ The analytical and approximation properties of $\Lambda_q$ have already been examined. In this paper, some properties of the Lupaş $q$-transform related to continuous linear operators in normed linear spaces are investigated.

Citation

Download Citation

Sofiya Ostrovska. "Geometric properties of the Lupaş $q$-transform." Banach J. Math. Anal. 8 (2) 139 - 145, 2014. https://doi.org/10.15352/bjma/1396640059

Information

Published: 2014
First available in Project Euclid: 4 April 2014

zbMATH: 1286.47024
MathSciNet: MR3189546
Digital Object Identifier: 10.15352/bjma/1396640059

Subjects:
Primary: 47A05
Secondary: 46B20 , 47B38 , 47B65

Keywords: Bernstein operator , continuous linear operator , isomorphic embedding , Lupaş $q$-transform

Rights: Copyright © 2014 Tusi Mathematical Research Group

Vol.8 • No. 2 • 2014
Back to Top