Open Access
2014 Compactness criteria in Banach spaces in the setting of continuous frames
Marius Măntoiu, Daniel Parra
Banach J. Math. Anal. 8(2): 30-48 (2014). DOI: 10.15352/bjma/1396640049
Abstract

To a generalized tight continuous frame in a Hilbert space $\mathcal{H}$, indexed by a locally compact space $\Sigma$ endowed with a Radon measure, one associates a coorbit theory converting spaces of functions on $\Sigma$ in spaces of vectors comparable with $\mathcal{H}$. If the continuous frame is provided by the action of a suitable family of bounded operators on a fixed window, a symbolic calculus emerges, assigning operators in $\mathcal{H}$ to functions on $\Sigma$. We give some criteria of relative compactness for sets and for families of compact operators, involving tightness properties in terms of objects canonically associated to the frame. Particular attention is dedicated to a magnetic version of the pseudodifferential calculus.

References

1.

Ph. M. Anselone, Compactness properties of sets of operators and their adjoints, Math. Z. 113 (1970), 233–236.  MR261397 10.1007/BF01110195 Ph. M. Anselone, Compactness properties of sets of operators and their adjoints, Math. Z. 113 (1970), 233–236.  MR261397 10.1007/BF01110195

2.

I. Beltiţă and D. Beltiţă, Magnetic Pseudo-differential Weyl calculus on nilpotent Lie groups. Ann. Global Anal. Geom. 36 (2009), no. 3, 293–322.  MR2544305 10.1007/s10455-009-9166-8 I. Beltiţă and D. Beltiţă, Magnetic Pseudo-differential Weyl calculus on nilpotent Lie groups. Ann. Global Anal. Geom. 36 (2009), no. 3, 293–322.  MR2544305 10.1007/s10455-009-9166-8

3.

D. Beltiţă and I. Beltiţă, Continuity of magnetic Weyl calculs, J. Funct. Anal. 260 (2011), no. 7,. 1944-1968.  MR2756145 10.1016/j.jfa.2011.01.004 D. Beltiţă and I. Beltiţă, Continuity of magnetic Weyl calculs, J. Funct. Anal. 260 (2011), no. 7,. 1944-1968.  MR2756145 10.1016/j.jfa.2011.01.004

4.

C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Inc. 1988.  MR928802 C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Inc. 1988.  MR928802

5.

M. Dörfler, H. Feichtinger and K. Gröchenig, Compactness criteria in function spaces, Colloq. Math. 94 (2002), no.. 1, 37–50.  MR1930200 10.4064/cm94-1-3 M. Dörfler, H. Feichtinger and K. Gröchenig, Compactness criteria in function spaces, Colloq. Math. 94 (2002), no.. 1, 37–50.  MR1930200 10.4064/cm94-1-3

6.

H.G. Feichtinger, Gewichtsfunktionen auf lokalkompakten gruppen, Sitzungsber. d.österr. Akad. Wiss.188 (1979),. 451–471.  MR599884 H.G. Feichtinger, Gewichtsfunktionen auf lokalkompakten gruppen, Sitzungsber. d.österr. Akad. Wiss.188 (1979),. 451–471.  MR599884

7.

H.G. Feichtinger, Compactness in translational invariant Banach spaces of distributions and compact multipliers, J. Math. Anal. Appl. 102 (1984), no. 2, 289–327.  MR755964 10.1016/0022-247X(84)90173-2 H.G. Feichtinger, Compactness in translational invariant Banach spaces of distributions and compact multipliers, J. Math. Anal. Appl. 102 (1984), no. 2, 289–327.  MR755964 10.1016/0022-247X(84)90173-2

8.

H.G. Feichtinger and K. Gröchenig, Banach spaces associated to integrable group representations and their atomic decompositions I, J. Funct. Anal. 86 (1989), 307–340.  MR1021139 10.1016/0022-1236(89)90055-4 H.G. Feichtinger and K. Gröchenig, Banach spaces associated to integrable group representations and their atomic decompositions I, J. Funct. Anal. 86 (1989), 307–340.  MR1021139 10.1016/0022-1236(89)90055-4

9.

G.B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122. Princeton University Press,. Princeton, NJ, 1989.  MR983366 G.B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122. Princeton University Press,. Princeton, NJ, 1989.  MR983366

10.

M. Fornasier and H. Rauhut, Continuous frames, function spaces and the discretization problem, J. Fourier Anal. Appl. 11 (2005), no. 3, 245–287.  MR2167169 10.1007/s00041-005-4053-6 M. Fornasier and H. Rauhut, Continuous frames, function spaces and the discretization problem, J. Fourier Anal. Appl. 11 (2005), no. 3, 245–287.  MR2167169 10.1007/s00041-005-4053-6

11.

F. Galaz-Fontes, Note on compact sets of compact operators on a reflexive and separable space, Proc. Amer. Math. Soc. 126 (1998), no. 2, 587–588.  MR1443386 10.1090/S0002-9939-98-04285-3 F. Galaz-Fontes, Note on compact sets of compact operators on a reflexive and separable space, Proc. Amer. Math. Soc. 126 (1998), no. 2, 587–588.  MR1443386 10.1090/S0002-9939-98-04285-3

12.

V. Georgescu and A. Iftimovici, Riesz-Kolmogorov compacity criterion, Ruelle theorem and Lorentz convergence on lcally compact Abelian groups, Potential Anal. 20 (2004), no. 3, 265–284.  MR2032498 10.1023/B:POTA.0000010667.05599.56 V. Georgescu and A. Iftimovici, Riesz-Kolmogorov compacity criterion, Ruelle theorem and Lorentz convergence on lcally compact Abelian groups, Potential Anal. 20 (2004), no. 3, 265–284.  MR2032498 10.1023/B:POTA.0000010667.05599.56

13.

K. Gröchenig, Foundations of time-frequency analysis, Birkhäuser Boston Inc., Boston, MA, (2001).  MR1843717 K. Gröchenig, Foundations of time-frequency analysis, Birkhäuser Boston Inc., Boston, MA, (2001).  MR1843717

14.

K. Gröchenig and T. Sthromer, Pseudodifferential operators on locally compact Abelian groups and Sjöstrand's symbol class, J. Reine Angew. Math. 613 (2007), 121–146.  MR2377132 K. Gröchenig and T. Sthromer, Pseudodifferential operators on locally compact Abelian groups and Sjöstrand's symbol class, J. Reine Angew. Math. 613 (2007), 121–146.  MR2377132

15.

H. Hanche Olsen and H. Holden, The Kolmogorov-Riesz compactness theorem, Exposition. Math. 28 (2010), no. 4, 385–394.  MR2734454 10.1016/j.exmath.2010.03.001 H. Hanche Olsen and H. Holden, The Kolmogorov-Riesz compactness theorem, Exposition. Math. 28 (2010), no. 4, 385–394.  MR2734454 10.1016/j.exmath.2010.03.001

16.

V. Iftimie, M. Măntoiu and R. Purice, Magnetic pseudodifferential operators, Publ. RIMS. 43 (2007), 585–623.  MR2361789 10.2977/prims/1201012035 V. Iftimie, M. Măntoiu and R. Purice, Magnetic pseudodifferential operators, Publ. RIMS. 43 (2007), 585–623.  MR2361789 10.2977/prims/1201012035

17.

H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981.  MR632257 H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981.  MR632257

18.

M. Măntoiu, Quantization rules, Hilbert algebras and coorbit spaces for families of bounded operators, arXiv, 1203.6347. M. Măntoiu, Quantization rules, Hilbert algebras and coorbit spaces for families of bounded operators, arXiv, 1203.6347.

19.

M. Măntoiu and R. Purice, The magnetic Weyl calculus, J. Math. Phys. 45 (2004), no. 4, 1394–1417.  MR2043834 10.1063/1.1668334 M. Măntoiu and R. Purice, The magnetic Weyl calculus, J. Math. Phys. 45 (2004), no. 4, 1394–1417.  MR2043834 10.1063/1.1668334

20.

F. Mayoral, Compact sets of compact operators in absence of $l^1$, Proc. Amer. Math. Soc. 129 (2000), no. 1, 79–82.  MR1784015 10.1090/S0002-9939-00-06007-X F. Mayoral, Compact sets of compact operators in absence of $l^1$, Proc. Amer. Math. Soc. 129 (2000), no. 1, 79–82.  MR1784015 10.1090/S0002-9939-00-06007-X

21.

T.W. Palmer, Totally bounded sets of precompact linear operators, Proc. Amer. Math. Soc. 20 (1969), 101–106.  MR235425 10.1090/S0002-9939-1969-0235425-3 T.W. Palmer, Totally bounded sets of precompact linear operators, Proc. Amer. Math. Soc. 20 (1969), 101–106.  MR235425 10.1090/S0002-9939-1969-0235425-3

22.

N.V. Pedersen, Matrix coefficients and a Weyl correspondence for nilpotent Lie groups, Invent. Math. 118 (1994),. 1–36.  MR1288465 10.1007/BF01231524 N.V. Pedersen, Matrix coefficients and a Weyl correspondence for nilpotent Lie groups, Invent. Math. 118 (1994),. 1–36.  MR1288465 10.1007/BF01231524

23.

H. Rauhut and T. Ullrich, Generalized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel type, J.. Funct. Anal. 260 (2011), no. 11, 3299–3362.  MR2776571 10.1016/j.jfa.2010.12.006 H. Rauhut and T. Ullrich, Generalized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel type, J.. Funct. Anal. 260 (2011), no. 11, 3299–3362.  MR2776571 10.1016/j.jfa.2010.12.006

24.

E. Serrano, C. Pineiero and J.M. Delgado, Equicompact sets of operators defined on Banach spaces, Proc. Amer. Math. Soc. 134 (2005), no. 3, 689–695.  MR2180885 10.1090/S0002-9939-05-08338-3 E. Serrano, C. Pineiero and J.M. Delgado, Equicompact sets of operators defined on Banach spaces, Proc. Amer. Math. Soc. 134 (2005), no. 3, 689–695.  MR2180885 10.1090/S0002-9939-05-08338-3

25.

A. Weil, L'intégration dans les groupes topologiques et ses applications. Hermann and Cie, Paris, 1940.  MR5741 A. Weil, L'intégration dans les groupes topologiques et ses applications. Hermann and Cie, Paris, 1940.  MR5741
Copyright © 2014 Tusi Mathematical Research Group
Marius Măntoiu and Daniel Parra "Compactness criteria in Banach spaces in the setting of continuous frames," Banach Journal of Mathematical Analysis 8(2), 30-48, (2014). https://doi.org/10.15352/bjma/1396640049
Published: 2014
Vol.8 • No. 2 • 2014
Back to Top