Translator Disclaimer
2014 Certain distance estimates for operators on the Bergman space
Namita Das, Madhusmita Sahoo
Banach J. Math. Anal. 8(2): 193-203 (2014). DOI: 10.15352/bjma/1396640063

Abstract

Let $\mathbb{D}$ be the open unit disk with its boundary $\partial\mathbb{D}$ in the complex plane $\mathbb{C}$ and $dA(z)=\frac{1}{\pi}dx\, dy,$ the normalized area measure on $\mathbb{D}.$ Let $L_{a}^{2}(\mathbb{D}, dA)$ be the Bergman space consisting of analytic functions on $\mathbb{D}$ that are also in $L^2(\mathbb{D}, dA).$ In this paper we obtain certain distance estimates for bounded linear operators defined on the Bergman space.

Citation

Download Citation

Namita Das. Madhusmita Sahoo. "Certain distance estimates for operators on the Bergman space." Banach J. Math. Anal. 8 (2) 193 - 203, 2014. https://doi.org/10.15352/bjma/1396640063

Information

Published: 2014
First available in Project Euclid: 4 April 2014

zbMATH: 1303.47029
MathSciNet: MR3189550
Digital Object Identifier: 10.15352/bjma/1396640063

Subjects:
Primary: 47B15
Secondary: 47B35

Rights: Copyright © 2014 Tusi Mathematical Research Group

JOURNAL ARTICLE
11 PAGES


SHARE
Vol.8 • No. 2 • 2014
Back to Top