Open Access
2013 Geometry of the left action of the p-Schatten groups
Maria Eugenia Di Iorio y Lucero
Banach J. Math. Anal. 7(1): 73-87 (2013). DOI: 10.15352/bjma/1358864549

Abstract

Let $\mathcal{H}$ be an infinite dimensional Hilbert space, $\mathcal{B}_{p}\left(\mathcal{H}\right)$ the $p$-Schatten class of $\mathcal{H}$ and $U_{p}\left(\mathcal{H}\right)$ be the Banach-Lie group of unitary operators which are $p$-Schatten perturbations of the identity. Let $A$ be a bounded selfadjoint operator in $\mathcal{H}$. We show that $$\mathcal{O}_A:=\left\{UA : U \in U_{p}\left(\mathcal{H}\right) \right\}$$ is a smooth submanifold of the affine space $A + \mathcal{B}_{p}\left(\mathcal{H}\right)$ if only if $A$ has closed range. Furthermore, it is a homogeneous reductive space of $U_{p}\left(\mathcal{H}\right)$. We introduce two metrics: one via the ambient Finsler metric induced as a submanifold of $A + \mathcal{B}_{p}\left(\mathcal{H}\right)$, the other, by means of the quotient Finsler metric provided by the homogeneous space structure. We show that $\mathcal{O}_A$ is a complete metric space with the rectifiable distance of these metrics.

Citation

Download Citation

Maria Eugenia Di Iorio y Lucero. "Geometry of the left action of the p-Schatten groups." Banach J. Math. Anal. 7 (1) 73 - 87, 2013. https://doi.org/10.15352/bjma/1358864549

Information

Published: 2013
First available in Project Euclid: 22 January 2013

zbMATH: 1279.47035
MathSciNet: MR3004267
Digital Object Identifier: 10.15352/bjma/1358864549

Subjects:
Primary: 47B10
Secondary: 2057N , 46T05‎ , 58B20

Keywords: Analytic submanifold , Finsler metric , Riemannian metric , Schatten operator

Rights: Copyright © 2013 Tusi Mathematical Research Group

Vol.7 • No. 1 • 2013
Back to Top