Open Access
2012 An interpolation theorem for sublinear operators on non-homogeneous metric measure spaces
Haibo Lin, Dongyong Yang
Banach J. Math. Anal. 6(2): 168-179 (2012). DOI: 10.15352/bjma/1342210167

Abstract

Let $({\mathcal X}, d, \mu)$ be a metric measure space and satisfy the so-called upper doubling condition and the geometrically doubling condition. In this paper, the authors establish an interpolation result that a sublinear operator which is bounded from the Hardy space $H^1(\mu)$ to $L^{1,\,\infty}(\mu)$ and from $L^\infty(\mu)$ to the BMO-type space RBMO($\mu$) is also bounded on $L^p(\mu)$ for all $p\in(1,\,\infty)$. This extension is not completely straightforward and improves the existing result

Citation

Download Citation

Haibo Lin. Dongyong Yang. "An interpolation theorem for sublinear operators on non-homogeneous metric measure spaces." Banach J. Math. Anal. 6 (2) 168 - 179, 2012. https://doi.org/10.15352/bjma/1342210167

Information

Published: 2012
First available in Project Euclid: 13 July 2012

zbMATH: 1252.42025
MathSciNet: MR2945995
Digital Object Identifier: 10.15352/bjma/1342210167

Subjects:
Primary: 42B35
Secondary: 42B25 , 47B38

Keywords: ‎geometrically doubling , interpolation , RBMO($\mu$)$ , sublinear , upper doubling

Rights: Copyright © 2012 Tusi Mathematical Research Group

Vol.6 • No. 2 • 2012
Back to Top