Open Access
2011 Weyl's theorem for algebraically absolute-(p,r)-paranormal operators
P. Maheswari Naik, D. Senthilkumar
Banach J. Math. Anal. 5(1): 29-37 (2011). DOI: 10.15352/bjma/1313362977

Abstract

An operator $T \in B(H)$ is said to be absolute-$(p, r)$-paranormal if $\| |T|^{p} |T^{*}|^{r} x \|^{r} \|x\| \geq \| |T^{*}|^{r} x\|^{p + r}$ for all $x \in H$ and for positive real number $p > 0$ and $r > 0$, where $T=U |T|$ is the polar decomposition of $T$. In this paper, we discuss some properties of absolute-$(p, r)$-paranormal operators and show that Weyl's theorem holds for algebraically absolute-$(p, r)$-paranormal operators.

Citation

Download Citation

P. Maheswari Naik. D. Senthilkumar. "Weyl's theorem for algebraically absolute-(p,r)-paranormal operators." Banach J. Math. Anal. 5 (1) 29 - 37, 2011. https://doi.org/10.15352/bjma/1313362977

Information

Published: 2011
First available in Project Euclid: 14 August 2011

zbMATH: 1221.47038
MathSciNet: MR2738517
Digital Object Identifier: 10.15352/bjma/1313362977

Subjects:
Primary: 47A13
Secondary: 47A30 , 47B06

Keywords: absolute-(p,r)-paranormal operator , Drazin invertible , Drazin spectrum , nilpotent, normaloid , Riesz idempotent , single valued extension property , stable index

Rights: Copyright © 2011 Tusi Mathematical Research Group

Vol.5 • No. 1 • 2011
Back to Top