Open Access
2010 Matrix order in Bohr inequality for operators
Masatoshi Fujii, Hongliang Zuo
Banach J. Math. Anal. 4(1): 21-27 (2010). DOI: 10.15352/bjma/1272374669
Abstract

The classical Bohr inequality says that $|a+b|^2\leq p|a|^2+q|b|^2$ for all scalars $a, \ b$ and positive $p,q$ with $\frac 1p + \frac 1q =1.$ The equality holds if and only if $(p-1)a=b.$ Several authors discussed operator version of Bohr inequality. In this paper, we give a unified proof to operator generalizations of Bohr inequality. One viewpoint of ours is a matrix inequality, and the other is a generalized parallelogram law for absolute value of operators, i.e., for operators $A$ and $B$ on a Hilbert space and $t\neq0$, $$|A-B|^2+\frac{1}{t}|tA+B|^2=(1+t)|A|^2+(1+\frac{1}{t})|B|^2.$$

References

1.

S. Abramovich, J. Barić and J.E. Pečarić, A new proof of an inequality of Bohr for Hilbert space operators, Linear Alg. Appl. 430 (2009), 1432–1435. MR2489404 1162.47016 10.1016/j.laa.2008.09.041S. Abramovich, J. Barić and J.E. Pečarić, A new proof of an inequality of Bohr for Hilbert space operators, Linear Alg. Appl. 430 (2009), 1432–1435. MR2489404 1162.47016 10.1016/j.laa.2008.09.041

2.

H. Bohr, Zur theorie der fastperiodischen funktionmen I, Acta Math. 45 (1927), 29–127. MR1555192 10.1007/BF02395468H. Bohr, Zur theorie der fastperiodischen funktionmen I, Acta Math. 45 (1927), 29–127. MR1555192 10.1007/BF02395468

3.

W.-S. Cheung and J.E. Pečarić, Bohr's inequalities for Hilbert space operators, J. Math. Anal. Appl. 323 (2006), 403–412. MR2262214 1108.26018 10.1016/j.jmaa.2005.10.046W.-S. Cheung and J.E. Pečarić, Bohr's inequalities for Hilbert space operators, J. Math. Anal. Appl. 323 (2006), 403–412. MR2262214 1108.26018 10.1016/j.jmaa.2005.10.046

4.

O. Hirzallah, Non-commutative operator Bohr inequalities, J. Math. Anal. Appl., 282 (2003), 578–583. MR1989112 1028.47009 10.1016/S0022-247X(03)00185-9O. Hirzallah, Non-commutative operator Bohr inequalities, J. Math. Anal. Appl., 282 (2003), 578–583. MR1989112 1028.47009 10.1016/S0022-247X(03)00185-9

5.

M.S. Moslehian, J.E. Pečarić and I. Perić, An operator extension of Bohr's inequality, Bull. Iranian Math. Soc. 35 (2009), 67–74. MR2642927M.S. Moslehian, J.E. Pečarić and I. Perić, An operator extension of Bohr's inequality, Bull. Iranian Math. Soc. 35 (2009), 67–74. MR2642927

6.

M.S. Moslehian and R. Rajić, Generalizations of Bohr's inequality in Hilbert $C^*$-modules, Linear Multilinear Alg., to appear.M.S. Moslehian and R. Rajić, Generalizations of Bohr's inequality in Hilbert $C^*$-modules, Linear Multilinear Alg., to appear.

7.

F. Zhang, On the Bohr inequality of operator, J. Math. Anal. Appl. 333 (2007), 1264–1271. MR2331730 1141.47015 10.1016/j.jmaa.2006.12.024F. Zhang, On the Bohr inequality of operator, J. Math. Anal. Appl. 333 (2007), 1264–1271. MR2331730 1141.47015 10.1016/j.jmaa.2006.12.024
Copyright © 2010 Tusi Mathematical Research Group
Masatoshi Fujii and Hongliang Zuo "Matrix order in Bohr inequality for operators," Banach Journal of Mathematical Analysis 4(1), 21-27, (2010). https://doi.org/10.15352/bjma/1272374669
Published: 2010
Vol.4 • No. 1 • 2010
Back to Top