Open Access
2010 G-convergence and homogenization of monotone damped hyperbolic equations
Gabriel Nguetseng, Hubert Nnang, Nils Svanstedt
Banach J. Math. Anal. 4(1): 100-115 (2010). DOI: 10.15352/bjma/1272374674
Abstract

Multiscale stochastic homogenization is studied for quasilinear hyperbolic problems. We consider the asymptotic behaviour of a sequence of realizations of the form ${\frac{\partial^2 u^\omega_{\varepsilon}}{\partial t^2}} - \mathrm{div}\left(a\left(T_1(\frac{x}{\varepsilon_1})\omega_1, T_2(\frac{x}{\varepsilon_2})\omega_2 ,t, D u^\omega_{\varepsilon}\right)\right)-\Delta(\frac{\partial u^\omega_{\varepsilon}}{\partial t}) +G\left(T_3(\frac{x}{\varepsilon_3})\omega_3 ,t,\frac{\partial u^\omega_{\varepsilon}}{\partial t}\right)=f$. It is shown, under certain structure assumptions on the random maps $a\left(\omega_1,\omega_2,t,\xi\right)$ and $G\left(\omega_3,t,\eta\right)$, that the sequence $\{u^\omega_\epsilon\}$ of solutions converges weakly in $L^p(0,T;W^{1,p}_0(\Omega))$ to the solution $u$ of the homogenized problem ${\frac{\partial^2 u}{\partial t^2}} - \mathrm{div}\left( b \left( t,D u \right)\right)-\Delta(\frac{\partial u}{\partial t})+{\overline G}(t,\frac{\partial u}{\partial t}) = f$.

References

1.

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff Publ., 1976.  MR390843 0328.47035 V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff Publ., 1976.  MR390843 0328.47035

2.

A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, 1978.  MR503330 A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, 1978.  MR503330

3.

A.C. Biazutti, On a nonlinear evolution equation and its applications, Nonlinear Anal. 24 (1995), no. 8, 1221–1234.  MR1325644 A.C. Biazutti, On a nonlinear evolution equation and its applications, Nonlinear Anal. 24 (1995), no. 8, 1221–1234.  MR1325644

4.

V. Chiado-Piat, G. Dal Maso and A. Defranceschi, $G$-convergence of monotone operators, Ann. Inst. H. Poincaré Anal. Non Linéare 7 (1990), no. 3, 123–160.  MR1065871 0731.35033 V. Chiado-Piat, G. Dal Maso and A. Defranceschi, $G$-convergence of monotone operators, Ann. Inst. H. Poincaré Anal. Non Linéare 7 (1990), no. 3, 123–160.  MR1065871 0731.35033

5.

V. Chiado-Piat and A. Defranceschi, Homogenization of monotone operators, Nonlinear Anal. 14 (1990), no. 9, 717–732.  MR1049117 V. Chiado-Piat and A. Defranceschi, Homogenization of monotone operators, Nonlinear Anal. 14 (1990), no. 9, 717–732.  MR1049117

6.

N. Dunford and J.T. Schwartz, Linear Operators Part 1 General Theory, Wiley, 1957.  MR1009162 0635.47001 N. Dunford and J.T. Schwartz, Linear Operators Part 1 General Theory, Wiley, 1957.  MR1009162 0635.47001

7.

Y. Efendiev and A. Pankov, Numerical homogenization of nonlinear random parabolic operators, Multiscale Model. Simul. 2 (2004), no. 2, 237–268.  MR2043587 Y. Efendiev and A. Pankov, Numerical homogenization of nonlinear random parabolic operators, Multiscale Model. Simul. 2 (2004), no. 2, 237–268.  MR2043587

8.

V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, 1994.  MR1329546 V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, 1994.  MR1329546

9.

G. Nguetseng, H. Nnang and N. Svanstedt, Asymptotic analysis for a weakly damped wave equation with application to a problem arising in elasticity, J. Funct. Spaces Appl., to appear.  MR2640948 1194.35041 10.1155/2010/291670 G. Nguetseng, H. Nnang and N. Svanstedt, Asymptotic analysis for a weakly damped wave equation with application to a problem arising in elasticity, J. Funct. Spaces Appl., to appear.  MR2640948 1194.35041 10.1155/2010/291670

10.

G. Nguetseng, H. Nnang and N. Svanstedt, Spatial-reiterated homogenization of quasilinear hyperbolic equations in a general deterministic setting, Submitted. G. Nguetseng, H. Nnang and N. Svanstedt, Spatial-reiterated homogenization of quasilinear hyperbolic equations in a general deterministic setting, Submitted.

11.

H. Nnang, Un theoreme de existence et unicité, University of Yaounde, 2000, Preprint. H. Nnang, Un theoreme de existence et unicité, University of Yaounde, 2000, Preprint.

12.

A. Pankov, $G$-convergence and Homogenization of Nonlinear Partial Differential Operators, Kluwer Publ., 1997.  MR1482803 0883.35001 A. Pankov, $G$-convergence and Homogenization of Nonlinear Partial Differential Operators, Kluwer Publ., 1997.  MR1482803 0883.35001

13.

S. Spagnolo, Convergence of Parabolic Equations, Boll. Un. Mat. Ital. B (5) 14 (1977), no. 2, 547–568.  MR460889 S. Spagnolo, Convergence of Parabolic Equations, Boll. Un. Mat. Ital. B (5) 14 (1977), no. 2, 547–568.  MR460889

14.

N. Svanstedt, $G$-convergence of parabolic operators, Nonlinear Anal. 36 (1999), no. 7, 807–842.  MR1682689 N. Svanstedt, $G$-convergence of parabolic operators, Nonlinear Anal. 36 (1999), no. 7, 807–842.  MR1682689

15.

N. Svanstedt, Multiscale stochastic homogenization of monotone operators, Netw. Heterog. Media 2 (2007), no. 1, 181–192.  MR2291817 10.3934/nhm.2007.2.181 N. Svanstedt, Multiscale stochastic homogenization of monotone operators, Netw. Heterog. Media 2 (2007), no. 1, 181–192.  MR2291817 10.3934/nhm.2007.2.181

16.

N. Svanstedt, Convergence of quasi-linear hyperbolic operators,. Hyperbolic Differ. Equ. 4 (2007), no. 4, 655–677.  MR2374220 1157.35009 10.1142/S0219891607001306 N. Svanstedt, Convergence of quasi-linear hyperbolic operators,. Hyperbolic Differ. Equ. 4 (2007), no. 4, 655–677.  MR2374220 1157.35009 10.1142/S0219891607001306
Copyright © 2010 Tusi Mathematical Research Group
Gabriel Nguetseng, Hubert Nnang, and Nils Svanstedt "G-convergence and homogenization of monotone damped hyperbolic equations," Banach Journal of Mathematical Analysis 4(1), 100-115, (2010). https://doi.org/10.15352/bjma/1272374674
Published: 2010
Vol.4 • No. 1 • 2010
Back to Top