Abstract
For positive integer r and real numbers $1\leq p\leq q$ we find necessary and sufficient conditions for the validity of the following inequality: \begin{eqnarray*}\left(\int\limits_a^bu(x)\left(\int\limits_a^x|g(x)-g(t)|^rw(t)dt \right)^{\frac{q}{r}}dx\right)^{\frac{1}{q}}\leq C\left( \int\limits_a^bv(x)|g'(x)|^pdx\right)^{\frac{1}{p}},\end{eqnarray*} where $u(\cdot)$, $v(\cdot)$, and $w(\cdot)$ are weight functions.
Citation
R. Oinarov. A. Kalybay. "Three-parameter weighted Hardy type inequalities." Banach J. Math. Anal. 2 (2) 85 - 93, 2008. https://doi.org/10.15352/bjma/1240336295
Information