Open Access
April 2018 Relatively compact sets in variable-exponent Lebesgue spaces
Rovshan Bandaliyev, Przemysław Górka
Banach J. Math. Anal. 12(2): 331-346 (April 2018). DOI: 10.1215/17358787-2017-0039

Abstract

We study totally bounded sets in variable Lebesgue spaces. The full characterization of this kind of sets is given for the case of variable Lebesgue space on metric measure spaces. Furthermore, the sufficient conditions for compactness are shown without assuming log-Hölder continuity of the exponent.

Citation

Download Citation

Rovshan Bandaliyev. Przemysław Górka. "Relatively compact sets in variable-exponent Lebesgue spaces." Banach J. Math. Anal. 12 (2) 331 - 346, April 2018. https://doi.org/10.1215/17358787-2017-0039

Information

Received: 31 January 2017; Accepted: 12 May 2017; Published: April 2018
First available in Project Euclid: 19 December 2017

zbMATH: 06873504
MathSciNet: MR3779717
Digital Object Identifier: 10.1215/17358787-2017-0039

Subjects:
Primary: 28C99
Secondary: 46B50 , 46E30

Keywords: Lebesgue spaces with variable exponent , metric measure spaces , Riesz–Kolmogorov theorem

Rights: Copyright © 2018 Tusi Mathematical Research Group

Vol.12 • No. 2 • April 2018
Back to Top