Open Access
April 2016 Metrization theory and the Kadec property
S. Ferrari, L. Oncina, J. Orihuela, M. Raja
Banach J. Math. Anal. 10(2): 281-306 (April 2016). DOI: 10.1215/17358787-3492809

Abstract

The uniform structure of a descriptive normed space (X,) always admits a description with an (F)-norm 1 such that weak and norm topologies coincide on

{xX:x1=ρ} for every ρ>0.

Citation

Download Citation

S. Ferrari. L. Oncina. J. Orihuela. M. Raja. "Metrization theory and the Kadec property." Banach J. Math. Anal. 10 (2) 281 - 306, April 2016. https://doi.org/10.1215/17358787-3492809

Information

Received: 7 November 2014; Accepted: 2 June 2015; Published: April 2016
First available in Project Euclid: 15 March 2016

zbMATH: 1351.46002
MathSciNet: MR3474840
Digital Object Identifier: 10.1215/17358787-3492809

Subjects:
Primary: 46A16
Secondary: 46B03 , 46B20 , 46B26 , 54E35

Keywords: $p$-convexity , ($F$)-norm , descriptive Banach space , Kadec norm , network , quasinorm

Rights: Copyright © 2016 Tusi Mathematical Research Group

Vol.10 • No. 2 • April 2016
Back to Top