Open Access
September 2008 A Morse Complex for Lorentzian Geodesics
Alberto Abbondandolo, Pietro Majer
Asian J. Math. 12(3): 299-320 (September 2008).

Abstract

We prove the Morse relations for the set of all geodesics connecting two non-conjugate points on a class of globally hyperbolic Lorentzian manifolds. We overcome the difficulties coming from the fact that the Morse index of every geodesic is infinite, and from the lack of the Palais-Smale condition, by using the Morse complex approach.

Citation

Download Citation

Alberto Abbondandolo. Pietro Majer. "A Morse Complex for Lorentzian Geodesics." Asian J. Math. 12 (3) 299 - 320, September 2008.

Information

Published: September 2008
First available in Project Euclid: 12 November 2008

zbMATH: 1166.58009
MathSciNet: MR2453558

Subjects:
Primary: 53C50 , 58E10

Keywords: Geodesic , Lorentzian manifold , Morse complex

Rights: Copyright © 2008 International Press of Boston

Vol.12 • No. 3 • September 2008
Back to Top