Open Access
Translator Disclaimer
April 2020 On the locus of Prym curves where the Prym-canonical map is not an embedding
Ciro Ciliberto, Thomas Dedieu, Concettina Galati, Andreas Leopold Knutsen
Author Affiliations +
Ark. Mat. 58(1): 71-85 (April 2020). DOI: 10.4310/ARKIV.2020.v58.n1.a5

Abstract

We prove that the locus of Prym curves $(C, \eta)$ of genus $g \geq 5$ for which the Prym-canonical system $\lvert \omega_C (\eta) \rvert$ is base point free but the Prym-canonical map is not an embedding is irreducible and unirational of dimension $2g + 1$.

Citation

Download Citation

Ciro Ciliberto. Thomas Dedieu. Concettina Galati. Andreas Leopold Knutsen. "On the locus of Prym curves where the Prym-canonical map is not an embedding." Ark. Mat. 58 (1) 71 - 85, April 2020. https://doi.org/10.4310/ARKIV.2020.v58.n1.a5

Information

Received: 24 June 2019; Revised: 13 November 2019; Published: April 2020
First available in Project Euclid: 16 January 2021

Digital Object Identifier: 10.4310/ARKIV.2020.v58.n1.a5

Rights: Copyright © 2020 Institut Mittag-Leffler

JOURNAL ARTICLE
15 PAGES


SHARE
Vol.58 • No. 1 • April 2020
Back to Top