Open Access
April 2019 On the multiplicity of tangent cones of monomial curves
Alessio Sammartano
Author Affiliations +
Ark. Mat. 57(1): 215-225 (April 2019). DOI: 10.4310/ARKIV.2019.v57.n1.a11

Abstract

Let $\Lambda$ be a numerical semigroup, $\mathcal{C}\subseteq \mathbb{A}^n$ the monomial curve singularity associated to $\Lambda$, and $\mathcal{T}$ its tangent cone. In this paper we provide a sharp upper bound for the least positive integer in $\Lambda$ in terms of the codimension and the maximum degree of the equations of $\mathcal{T}$, when $\mathcal{T}$ is not a complete intersection. A special case of this result settles a question of J. Herzog and D. Stamate.

Citation

Download Citation

Alessio Sammartano. "On the multiplicity of tangent cones of monomial curves." Ark. Mat. 57 (1) 215 - 225, April 2019. https://doi.org/10.4310/ARKIV.2019.v57.n1.a11

Information

Received: 19 November 2017; Revised: 22 June 2018; Published: April 2019
First available in Project Euclid: 16 April 2020

zbMATH: 1423.13046
MathSciNet: MR3951281
Digital Object Identifier: 10.4310/ARKIV.2019.v57.n1.a11

Subjects:
Primary: 13A30
Secondary: 13C40 , 13D02 , 13H10 , 13H15 , 13P10 , 20M14

Keywords: associated graded ring , Betti numbers , degree , initial ideal , monomial curve , multiplicity , numerical semigroup , tangent cone

Rights: Copyright © 2019 Institut Mittag-Leffler

Vol.57 • No. 1 • April 2019
Back to Top