Open Access
September 2017 Spectral analysis of the subelliptic oblique derivative problem
Kazuaki Taira
Author Affiliations +
Ark. Mat. 55(1): 243-270 (September 2017). DOI: 10.4310/ARKIV.2017.v55.n1.a13

Abstract

This paper is devoted to a functional analytic approach to the subelliptic oblique derivative problem for the usual Laplacian with a complex parameter $\lambda$. We solve the long-standing open problem of the asymptotic eigenvalue distribution for the homogeneous oblique derivative problem when $\lvert \lambda \rvert$ tends to $\infty$. We prove the spectral properties of the closed realization of the Laplacian similar to the elliptic (non-degenerate) case. In the proof we make use of Boutet de Monvel calculus in order to study the resolvents and their adjoints in the framework of $L^2$ Sobolev spaces.

Citation

Download Citation

Kazuaki Taira. "Spectral analysis of the subelliptic oblique derivative problem." Ark. Mat. 55 (1) 243 - 270, September 2017. https://doi.org/10.4310/ARKIV.2017.v55.n1.a13

Information

Received: 16 March 2016; Published: September 2017
First available in Project Euclid: 2 February 2018

zbMATH: 06823283
MathSciNet: MR3711152
Digital Object Identifier: 10.4310/ARKIV.2017.v55.n1.a13

Subjects:
Primary: 35J25 , 35P20 , 35S05 , 47D03

Keywords: asymptotic eigenvalue distribution , Boutet de Monvel calculus , oblique derivative problem , subelliptic operator

Rights: Copyright © 2017 Institut Mittag-Leffler

Vol.55 • No. 1 • September 2017
Back to Top