Translator Disclaimer
April 2005 Asymptotic values of strongly normal functions
Karl F. Barth, Philip J. Rippon
Author Affiliations +
Ark. Mat. 43(1): 69-84 (April 2005). DOI: 10.1007/BF02383611

Abstract

Letf be meromorphic in the open unit disc D and strongly normal; that is, $(1 - |z|^2 )f^\# (z) \to 0as|z| \to 1,$

Wheref# denotes the spherical derivative of f. We prove results about the existence of asymptotic values of f at points of C=∂D. For example, f has asymptotic values at an uncountably dense subset of C, and the asymptotic values of f form a set of positive linear measure.

Dedication

Dedicated to the memory of Professor Matts Essén

Citation

Download Citation

Karl F. Barth. Philip J. Rippon. "Asymptotic values of strongly normal functions." Ark. Mat. 43 (1) 69 - 84, April 2005. https://doi.org/10.1007/BF02383611

Information

Received: 12 June 2003; Published: April 2005
First available in Project Euclid: 31 January 2017

zbMATH: 1114.30035
MathSciNet: MR2134699
Digital Object Identifier: 10.1007/BF02383611

Rights: 2005 © Institut Mittag-Leffler

JOURNAL ARTICLE
16 PAGES


SHARE
Vol.43 • No. 1 • April 2005
Back to Top