Abstract
Let $(X, Y), (X_1, Y_1), \cdots, (X_n, Y_n)$ be independent identically distributed random vectors from $R^d \times R$, and let $E(|Y|^p) < \infty$ for some $p \geq 1$. We wish to estimate the regression function $m(x) = E(Y \mid X = x)$ by $m_n(x)$, a function of $x$ and $(X_1, Y_1), \cdots, (X_n, Y_n)$. For large classes of kernel estimates and nearest neighbor estimates, sufficient conditions are given for $E\{|m_n(x) - m(x)|^p\} \rightarrow 0$ as $n \rightarrow \infty$, almost all $x$. No additional conditions are imposed on the distribution of $(X, Y)$. As a by-product, just assuming the boundedness of $Y$, the almost sure convergence to 0 of $E\{|m_n(X) - m(X)\| X_1, Y_1, \cdots, X_n, Y_n\}$ is established for the same estimates. Finally, the weak and strong Bayes risk consistency of the corresponding nonparametric discrimination rules is proved for all possible distributions of the data.
Citation
Luc Devroye. "On the Almost Everywhere Convergence of Nonparametric Regression Function Estimates." Ann. Statist. 9 (6) 1310 - 1319, November, 1981. https://doi.org/10.1214/aos/1176345647
Information