Open Access
July, 1981 On the Existence and Uniqueness of the Maximum Likelihood Estimate of a Vector-Valued Parameter in Fixed-Size Samples
Timo Makelainen, Klaus Schmidt, George P. H. Styan
Ann. Statist. 9(4): 758-767 (July, 1981). DOI: 10.1214/aos/1176345516

Abstract

The maximum likelihood estimate is shown to exist and to be unique if a twice continuously differentiable likelihood function is constant on the boundary of the parameter space and if the Hessian matrix is negative definite whenever the gradient vector vanishes. The condition of constancy on the boundary cannot be completely removed, cf. Tarone and Gruenhage (1975). The theory is illustrated with several examples.

Citation

Download Citation

Timo Makelainen. Klaus Schmidt. George P. H. Styan. "On the Existence and Uniqueness of the Maximum Likelihood Estimate of a Vector-Valued Parameter in Fixed-Size Samples." Ann. Statist. 9 (4) 758 - 767, July, 1981. https://doi.org/10.1214/aos/1176345516

Information

Published: July, 1981
First available in Project Euclid: 12 April 2007

zbMATH: 0473.62004
MathSciNet: MR619279
Digital Object Identifier: 10.1214/aos/1176345516

Subjects:
Primary: 62F10
Secondary: 62H12

Keywords: constancy on the boundary , Hessian matrix , likelihood equations , likelihood surface , Multivariate analysis , Unimodality

Rights: Copyright © 1981 Institute of Mathematical Statistics

Vol.9 • No. 4 • July, 1981
Back to Top