Open Access
July, 1980 Strong Consistency of Least Squares Estimators in Linear Regression Models
N. Christopeit, K. Helmes
Ann. Statist. 8(4): 778-788 (July, 1980). DOI: 10.1214/aos/1176345070

Abstract

For the linear regression model $y = X \beta + u$ with stochastic regressor matrix, strong consistency of the least squares estimator of $\beta$ is proved in the case of martingale difference errors and predetermined regressors and for the case where errors and regressors are orthogonal up to the second order. The results obtained are applied to parameter estimation in autoregressive processes, leading to strong consistency if the errors are quasi-independent up to the fourth order.

Citation

Download Citation

N. Christopeit. K. Helmes. "Strong Consistency of Least Squares Estimators in Linear Regression Models." Ann. Statist. 8 (4) 778 - 788, July, 1980. https://doi.org/10.1214/aos/1176345070

Information

Published: July, 1980
First available in Project Euclid: 12 April 2007

zbMATH: 0468.62060
MathSciNet: MR572621
Digital Object Identifier: 10.1214/aos/1176345070

Subjects:
Primary: 62J05
Secondary: 60F15

Keywords: autoregressive processes , least squares estimators , Linear regression , strong consistency

Rights: Copyright © 1980 Institute of Mathematical Statistics

Vol.8 • No. 4 • July, 1980
Back to Top