Open Access
September, 1979 The $L_1$ Convergence of Kernel Density Estimates
L. P. Devroye, T. J. Wagner
Ann. Statist. 7(5): 1136-1139 (September, 1979). DOI: 10.1214/aos/1176344796

Abstract

Let $X_1, \cdots, X_n$ be a sequence of independent random vectors taking values in $\mathbf{\mathbb{R}}^d$ with a common probability density $f$. If $f_n(x) = (1/h) h^{-d}_n\sum^n_{i = 1}K((x - X_i)/h_n)$ is the kernel estimate of $f$ from $X_1, \cdots, X_n$ then conditions on $K$ and $\{h_n\}$ are given which insure that $\int|f_n(x) - f(x)|dx \rightarrow_n 0$ in probability or with probability one. No continuity conditions are imposed on $f$.

Citation

Download Citation

L. P. Devroye. T. J. Wagner. "The $L_1$ Convergence of Kernel Density Estimates." Ann. Statist. 7 (5) 1136 - 1139, September, 1979. https://doi.org/10.1214/aos/1176344796

Information

Published: September, 1979
First available in Project Euclid: 12 April 2007

zbMATH: 0423.62031
MathSciNet: MR536515
Digital Object Identifier: 10.1214/aos/1176344796

Subjects:
Primary: 60F15
Secondary: 62G05

Keywords: Density estimation , integral convergence , Kernel estimates

Rights: Copyright © 1979 Institute of Mathematical Statistics

Vol.7 • No. 5 • September, 1979
Back to Top