Open Access
September, 1979 Design of Optimal Control for a Regression Problem
Der-shin Chang
Ann. Statist. 7(5): 1078-1085 (September, 1979). DOI: 10.1214/aos/1176344791

Abstract

Consider the realization of the process $y(t) = \Sigma^n_{k=1}\theta_kf_k(t) + \xi(t)$ on the interval $T = \lbrack 0, 1\rbrack$ for functions $f_1(t), f_2(t), \cdots, f_n(t)$ in $H(R)$, the reproducing kernel Hilbert space with reproducing kernel $R(s, t)$ on $T \times T$, where $R(s, t) = E\xi(s)\xi(t)$ is assumed to be continuous and known. Problems of the selection of functions $\{f_k(t)\}^n_{k=1}$ are discussed for $D$-optimal, $A$-optimal and other criteria of optimal designs.

Citation

Download Citation

Der-shin Chang. "Design of Optimal Control for a Regression Problem." Ann. Statist. 7 (5) 1078 - 1085, September, 1979. https://doi.org/10.1214/aos/1176344791

Information

Published: September, 1979
First available in Project Euclid: 12 April 2007

zbMATH: 0421.62057
MathSciNet: MR536510
Digital Object Identifier: 10.1214/aos/1176344791

Subjects:
Primary: 62K05
Secondary: 93E20

Keywords: $A$-optimal , continuous sense of $D$-optimal , continuous sense of Gauss-Markov theory , regression model , ‎reproducing kernel Hilbert ‎space , weighted optimum design

Rights: Copyright © 1979 Institute of Mathematical Statistics

Vol.7 • No. 5 • September, 1979
Back to Top