Open Access
January, 1979 Characterizations of Estimability in the General Linear Model
I. S. Alalouf, G. P. H. Styan
Ann. Statist. 7(1): 194-200 (January, 1979). DOI: 10.1214/aos/1176344564

Abstract

In the general linear model $\mathscr{E}(\mathbf{y}) = \mathbf{X\beta}$, the vector $\mathbf{A\beta}$ is estimable whenever there is a matrix $\mathbf{B}$ so that $\mathscr{E}(\mathbf{By}) = \mathbf{A\beta}$. Several characterizations of estimability are presented along with short easy proofs. The characterizations involve rank equalities, generalized inverses, Schur complements and partitioned matrices.

Citation

Download Citation

I. S. Alalouf. G. P. H. Styan. "Characterizations of Estimability in the General Linear Model." Ann. Statist. 7 (1) 194 - 200, January, 1979. https://doi.org/10.1214/aos/1176344564

Information

Published: January, 1979
First available in Project Euclid: 12 April 2007

zbMATH: 0398.62053
MathSciNet: MR515693
Digital Object Identifier: 10.1214/aos/1176344564

Subjects:
Primary: 62F10
Secondary: 15A03 , ‎15A09

Keywords: generalized inverses , partitioned matrices , rank additivity , Rank equalities , Schur complements

Rights: Copyright © 1979 Institute of Mathematical Statistics

Vol.7 • No. 1 • January, 1979
Back to Top