Translator Disclaimer
August 2022 Random graph asymptotics for treatment effect estimation under network interference
Shuangning Li, Stefan Wager
Author Affiliations +
Ann. Statist. 50(4): 2334-2358 (August 2022). DOI: 10.1214/22-AOS2191


The network interference model for treatment effect estimation places experimental units at the vertices of an undirected exposure graph, such that treatment assigned to one unit may affect the outcome of another unit if and only if these two units are connected by an edge. This model has recently gained popularity as means of incorporating interference effects into the Neyman–Rubin potential outcomes framework; and several authors have considered estimation of various causal targets, including the direct and indirect effects of treatment. In this paper, we consider large-sample asymptotics for treatment effect estimation under network interference in a setting where the exposure graph is a random draw from a graphon. When targeting the direct effect, we establish a central limit theorem and find that—in our setting—popular estimators are considerably more accurate than existing results suggest. Meanwhile, when targeting the indirect effect, we leverage our generative assumptions to propose a consistent estimator in a setting where no other consistent estimators are currently available. Overall, our results highlight the promise of random graph asymptotics in understanding the practicality and limits of causal inference under network interference.

Funding Statement

This work was partially supported by NSF Grant DMS-1916163.


We are grateful for helpful discussions with Guillaume Basse, Emmanuel Candès, Peng Ding, Trevor Hastie, Avi Feller, Betsy Ogburn, Fredrick Sävje and seminar participants at a number of venues.


Download Citation

Shuangning Li. Stefan Wager. "Random graph asymptotics for treatment effect estimation under network interference." Ann. Statist. 50 (4) 2334 - 2358, August 2022.


Received: 1 November 2020; Revised: 1 December 2021; Published: August 2022
First available in Project Euclid: 25 August 2022

Digital Object Identifier: 10.1214/22-AOS2191

Primary: 62G20

Keywords: Causal inference , direct and indirect effects , graphon , potential outcome

Rights: Copyright © 2022 Institute of Mathematical Statistics


This article is only available to subscribers.
It is not available for individual sale.

Vol.50 • No. 4 • August 2022
Back to Top