Abstract
We study principal component analysis (PCA) for mean zero i.i.d. Gaussian observations $X_{1},\dots,X_{n}$ in a separable Hilbert space $\mathbb{H}$ with unknown covariance operator $\Sigma $. The complexity of the problem is characterized by its effective rank $\mathbf{r}(\Sigma):=\frac{\operatorname{tr}(\Sigma)}{\|\Sigma \|}$, where $\mathrm{tr}(\Sigma)$ denotes the trace of $\Sigma $ and $\|\Sigma\|$ denotes its operator norm. We develop a method of bias reduction in the problem of estimation of linear functionals of eigenvectors of $\Sigma $. Under the assumption that $\mathbf{r}(\Sigma)=o(n)$, we establish the asymptotic normality and asymptotic properties of the risk of the resulting estimators and prove matching minimax lower bounds, showing their semiparametric optimality.
Citation
Vladimir Koltchinskii. Matthias Löffler. Richard Nickl. "Efficient estimation of linear functionals of principal components." Ann. Statist. 48 (1) 464 - 490, February 2020. https://doi.org/10.1214/19-AOS1816
Information