Open Access
October 2019 The middle-scale asymptotics of Wishart matrices
Didier Chételat, Martin T. Wells
Ann. Statist. 47(5): 2639-2670 (October 2019). DOI: 10.1214/18-AOS1760
Abstract

We study the behavior of a real $p$-dimensional Wishart random matrix with $n$ degrees of freedom when $n,p\rightarrow\infty$ but $p/n\rightarrow0$. We establish the existence of phase transitions when $p$ grows at the order $n^{(K+1)/(K+3)}$ for every $K\in\mathbb{N}$, and derive expressions for approximating densities between every two phase transitions. To do this, we make use of a novel tool we call the $\mathcal{F}$-conjugate of an absolutely continuous distribution, which is obtained from the Fourier transform of the square root of its density. In the case of the normalized Wishart distribution, this represents an extension of the $t$-distribution to the space of real symmetric matrices.

References

1.

Anderson, G. W., Guionnet, A. and Zeitouni, O. (2010). An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge. 1184.15023Anderson, G. W., Guionnet, A. and Zeitouni, O. (2010). An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge. 1184.15023

2.

Bartlett, M. S. (1933). On the theory of statistical regression. Proc. Roy. Soc. Edinburgh Sect. A 53 260–283. 0008.02402 10.1017/S0370164600015637Bartlett, M. S. (1933). On the theory of statistical regression. Proc. Roy. Soc. Edinburgh Sect. A 53 260–283. 0008.02402 10.1017/S0370164600015637

3.

Bubeck, S. and Ganguly, S. (2018). Entropic CLT and phase transition in high-dimensional Wishart matrices. Int. Math. Res. Not. IMRN 2 588–606. 1407.82024Bubeck, S. and Ganguly, S. (2018). Entropic CLT and phase transition in high-dimensional Wishart matrices. Int. Math. Res. Not. IMRN 2 588–606. 1407.82024

4.

Bubeck, S., Ding, J., Eldan, R. and Rácz, M. Z. (2016). Testing for high-dimensional geometry in random graphs. Random Structures Algorithms 49 503–532. 1349.05315 10.1002/rsa.20633Bubeck, S., Ding, J., Eldan, R. and Rácz, M. Z. (2016). Testing for high-dimensional geometry in random graphs. Random Structures Algorithms 49 503–532. 1349.05315 10.1002/rsa.20633

5.

Hardy, G. H., Littlewood, J. E. and Pólya, G. (1967). Inequalities, 2nd ed. Cambridge University Press.Hardy, G. H., Littlewood, J. E. and Pólya, G. (1967). Inequalities, 2nd ed. Cambridge University Press.

6.

Hua, L. K. (1963). Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Amer. Math. Soc., Providence, RI.Hua, L. K. (1963). Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Amer. Math. Soc., Providence, RI.

7.

Jiang, T. and Li, D. (2015). Approximation of rectangular beta-Laguerre ensembles and large deviations. J. Theoret. Probab. 28 804–847. 1333.15032 10.1007/s10959-013-0519-7Jiang, T. and Li, D. (2015). Approximation of rectangular beta-Laguerre ensembles and large deviations. J. Theoret. Probab. 28 804–847. 1333.15032 10.1007/s10959-013-0519-7

8.

Knuth, D. (1976). Big omicron and big omega and big theta. SIGACT News 18–24.Knuth, D. (1976). Big omicron and big omega and big theta. SIGACT News 18–24.

9.

Ledoux, M. (2009). A recursion formula for the moments of the Gaussian orthogonal ensemble. Ann. Inst. Henri Poincaré Probab. Stat. 45 754–769. 1184.60003 10.1214/08-AIHP184 euclid.aihp/1249391383Ledoux, M. (2009). A recursion formula for the moments of the Gaussian orthogonal ensemble. Ann. Inst. Henri Poincaré Probab. Stat. 45 754–769. 1184.60003 10.1214/08-AIHP184 euclid.aihp/1249391383

10.

Letac, G. and Massam, H. (2004). All invariant moments of the Wishart distribution. Scand. J. Stat. 31 295–318. 1063.62081 10.1111/j.1467-9469.2004.01-043.xLetac, G. and Massam, H. (2004). All invariant moments of the Wishart distribution. Scand. J. Stat. 31 295–318. 1063.62081 10.1111/j.1467-9469.2004.01-043.x

11.

Marčenko, V. A. and Pastur, L. A. (1967). Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. 72 507–536.Marčenko, V. A. and Pastur, L. A. (1967). Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. 72 507–536.

12.

Matsumoto, S. (2012). General moments of the inverse real Wishart distribution and orthogonal Weingarten functions. J. Theoret. Probab. 25 798–822. 1256.15019 10.1007/s10959-011-0340-0Matsumoto, S. (2012). General moments of the inverse real Wishart distribution and orthogonal Weingarten functions. J. Theoret. Probab. 25 798–822. 1256.15019 10.1007/s10959-011-0340-0

13.

Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley, New York. 0556.62028Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley, New York. 0556.62028

14.

Rácz, M. Z. and Richey, J. (2018). A smooth transition from Wishart to GOE. J. Theoret. Probab. 1–9.Rácz, M. Z. and Richey, J. (2018). A smooth transition from Wishart to GOE. J. Theoret. Probab. 1–9.

15.

Stein, E. M. and Weiss, G. (1971). Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series 32. Princeton Univ. Press, Princeton, NJ. 0232.42007Stein, E. M. and Weiss, G. (1971). Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series 32. Princeton Univ. Press, Princeton, NJ. 0232.42007

16.

Wishart, J. (1928). The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A 32–52. 54.0565.02Wishart, J. (1928). The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A 32–52. 54.0565.02
Copyright © 2019 Institute of Mathematical Statistics
Didier Chételat and Martin T. Wells "The middle-scale asymptotics of Wishart matrices," The Annals of Statistics 47(5), 2639-2670, (October 2019). https://doi.org/10.1214/18-AOS1760
Received: 1 July 2017; Published: October 2019
Vol.47 • No. 5 • October 2019
Back to Top