Abstract
Consider some multivariate diffusion process $\mathbf{X}=(X_{t})_{t\geq0}$ with unique invariant probability measure and associated invariant density $\rho$, and assume that a continuous record of observations $X^{T}=(X_{t})_{0\leq t\leq T}$ of $\mathbf{X}$ is available. Recent results on functional inequalities for symmetric Markov semigroups are used in the statistical analysis of kernel estimators $\widehat{\rho}_{T}=\widehat{\rho}_{T}(X^{T})$ of $\rho$. For the basic problem of estimation with respect to $\mathrm{sup}$-norm risk under anisotropic Hölder smoothness constraints, the proposed approach yields an adaptive estimator which converges at a substantially faster rate than in standard multivariate density estimation from i.i.d. observations.
Citation
Claudia Strauch. "Adaptive invariant density estimation for ergodic diffusions over anisotropic classes." Ann. Statist. 46 (6B) 3451 - 3480, December 2018. https://doi.org/10.1214/17-AOS1664
Information