Open Access
August 2018 Jump filtering and efficient drift estimation for Lévy-driven SDEs
Arnaud Gloter, Dasha Loukianova, Hilmar Mai
Ann. Statist. 46(4): 1445-1480 (August 2018). DOI: 10.1214/17-AOS1591
Abstract

The problem of drift estimation for the solution $X$ of a stochastic differential equation with Lévy-type jumps is considered under discrete high-frequency observations with a growing observation window. An efficient and asymptotically normal estimator for the drift parameter is constructed under minimal conditions on the jump behavior and the sampling scheme. In the case of a bounded jump measure density, these conditions reduce to $n\Delta_{n}^{3-\varepsilon}\rightarrow 0$, where $n$ is the number of observations and $\Delta_{n}$ is the maximal sampling step. This result relaxes the condition $n\Delta_{n}^{2}\rightarrow 0$ usually required for joint estimation of drift and diffusion coefficient for SDEs with jumps. The main challenge in this estimation problem stems from the appearance of the unobserved continuous part $X^{c}$ in the likelihood function. In order to construct the drift estimator, we recover this continuous part from discrete observations. More precisely, we estimate, in a nonparametric way, stochastic integrals with respect to $X^{c}$. Convergence results of independent interest are proved for these nonparametric estimators.

References

1.

[1] Applebaum, D. (2009). Lévy Processes and Stochastic Calculus, 2nd ed. Cambridge Studies in Advanced Mathematics 116. Cambridge Univ. Press, Cambridge.[1] Applebaum, D. (2009). Lévy Processes and Stochastic Calculus, 2nd ed. Cambridge Studies in Advanced Mathematics 116. Cambridge Univ. Press, Cambridge.

2.

[2] Barndorff-Nielsen, O. E. and Shephard, N. (2001). Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B. Stat. Methodol. 63 167–241. 0983.60028 10.1111/1467-9868.00282[2] Barndorff-Nielsen, O. E. and Shephard, N. (2001). Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B. Stat. Methodol. 63 167–241. 0983.60028 10.1111/1467-9868.00282

3.

[3] Bibinger, M. and Winkelmann, L. (2015). Econometrics of co-jumps in high-frequency data with noise. J. Econometrics 184 361–378. 1331.91200 10.1016/j.jeconom.2014.10.004[3] Bibinger, M. and Winkelmann, L. (2015). Econometrics of co-jumps in high-frequency data with noise. J. Econometrics 184 361–378. 1331.91200 10.1016/j.jeconom.2014.10.004

4.

[4] Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman & Hall/CRC, Boca Raton, FL. 1052.91043[4] Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman & Hall/CRC, Boca Raton, FL. 1052.91043

5.

[5] Ditlevsen, S. and Greenwood, P. (2013). The Morris-Lecar neuron model embeds a leaky integrate-and-fire model. J. Math. Biol. 67 239–259. 1315.60044 10.1007/s00285-012-0552-7[5] Ditlevsen, S. and Greenwood, P. (2013). The Morris-Lecar neuron model embeds a leaky integrate-and-fire model. J. Math. Biol. 67 239–259. 1315.60044 10.1007/s00285-012-0552-7

6.

[6] Figueroa-López, J. E. and Nisen, J. (2013). Optimally thresholded realized power variations for Lévy jump diffusion models. Stochastic Process. Appl. 123 2648–2677. 1285.62099 10.1016/j.spa.2013.04.006[6] Figueroa-López, J. E. and Nisen, J. (2013). Optimally thresholded realized power variations for Lévy jump diffusion models. Stochastic Process. Appl. 123 2648–2677. 1285.62099 10.1016/j.spa.2013.04.006

7.

[7] Florens-Zmirou, D. (1989). Approximate discrete-time schemes for statistics of diffusion processes. Statistics 20 547–557. 0704.62072 10.1080/02331888908802205[7] Florens-Zmirou, D. (1989). Approximate discrete-time schemes for statistics of diffusion processes. Statistics 20 547–557. 0704.62072 10.1080/02331888908802205

8.

[8] Genon-Catalot, V. and Jacod, J. (1993). On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. Henri Poincaré Probab. Stat. 29 119–151. MR1204521 0770.62070[8] Genon-Catalot, V. and Jacod, J. (1993). On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. Henri Poincaré Probab. Stat. 29 119–151. MR1204521 0770.62070

9.

[9] Gloter, A., Loukianova, D. and Mai, H. (2018). Supplement to “Jump filtering and efficient drift estimation for Lévy-driven SDEs.”  DOI:10.1214/17-AOS1591SUPP.[9] Gloter, A., Loukianova, D. and Mai, H. (2018). Supplement to “Jump filtering and efficient drift estimation for Lévy-driven SDEs.”  DOI:10.1214/17-AOS1591SUPP.

10.

[10] Hutton, J. E. and Nelson, P. I. (1984). Interchanging the order of differentiation and stochastic integration. Stochastic Process. Appl. 18 371–377. 0551.60057 10.1016/0304-4149(84)90307-7[10] Hutton, J. E. and Nelson, P. I. (1984). Interchanging the order of differentiation and stochastic integration. Stochastic Process. Appl. 18 371–377. 0551.60057 10.1016/0304-4149(84)90307-7

11.

[11] Ibragimov, I. and Has’minskii, R. (2013). Statistical Estimation: Asymptotic Theory, Springer-Verlag, New York.[11] Ibragimov, I. and Has’minskii, R. (2013). Statistical Estimation: Asymptotic Theory, Springer-Verlag, New York.

12.

[12] Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Grundlehren der Mathematischen Wissenschaften 288. Springer, Berlin. 1018.60002[12] Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Grundlehren der Mathematischen Wissenschaften 288. Springer, Berlin. 1018.60002

13.

[13] Kessler, M. (1997). Estimation of an ergodic diffusion from discrete observations. Scand. J. Stat. 24 211–229. 0879.60058 10.1111/1467-9469.00059[13] Kessler, M. (1997). Estimation of an ergodic diffusion from discrete observations. Scand. J. Stat. 24 211–229. 0879.60058 10.1111/1467-9469.00059

14.

[14] Kou, S. G. (2002). A jump-diffusion model for option pricing. Manage. Sci. 48 1086–1101. 1216.91039 10.1287/mnsc.48.8.1086.166[14] Kou, S. G. (2002). A jump-diffusion model for option pricing. Manage. Sci. 48 1086–1101. 1216.91039 10.1287/mnsc.48.8.1086.166

15.

[15] Küchler, U. and Sørensen, M. (1999). A note on limit theorems for multivariate martingales. Bernoulli 5 483–493. 0943.60016 10.2307/3318713 euclid.bj/1172617200[15] Küchler, U. and Sørensen, M. (1999). A note on limit theorems for multivariate martingales. Bernoulli 5 483–493. 0943.60016 10.2307/3318713 euclid.bj/1172617200

16.

[16] Loukianova, D. and Loukianov, O. (2005). Uniform law of large numbers and consistency of estimators for Harris diffusions. Statist. Probab. Lett. 74 347–355. 1079.60511 10.1016/j.spl.2005.04.056[16] Loukianova, D. and Loukianov, O. (2005). Uniform law of large numbers and consistency of estimators for Harris diffusions. Statist. Probab. Lett. 74 347–355. 1079.60511 10.1016/j.spl.2005.04.056

17.

[17] Mai, H. (2014). Efficient maximum likelihood estimation for Lévy-driven Ornstein-Uhlenbeck processes. Bernoulli 20 919–957. MR3178522 06291826 10.3150/13-BEJ510 euclid.bj/1393594010[17] Mai, H. (2014). Efficient maximum likelihood estimation for Lévy-driven Ornstein-Uhlenbeck processes. Bernoulli 20 919–957. MR3178522 06291826 10.3150/13-BEJ510 euclid.bj/1393594010

18.

[18] Mancini, C. (2011). The speed of convergence of the threshold estimator of integrated variance. Stochastic Process. Appl. 121 845–855. 1216.62159 10.1016/j.spa.2010.12.001[18] Mancini, C. (2011). The speed of convergence of the threshold estimator of integrated variance. Stochastic Process. Appl. 121 845–855. 1216.62159 10.1016/j.spa.2010.12.001

19.

[19] Masuda, H. (2007). Ergodicity and exponential $\beta$-mixing bounds for multidimensional diffusions with jumps. Stochastic Process. Appl. 117 35–56.[19] Masuda, H. (2007). Ergodicity and exponential $\beta$-mixing bounds for multidimensional diffusions with jumps. Stochastic Process. Appl. 117 35–56.

20.

[20] Masuda, H. (2009). Erratum to: “Ergodicity and exponential $\beta$-mixing bound for multidimensional diffusions with jumps” [Stochastic Process. Appl. 117 (2007) 35–56] [MR2287102]. Stochastic Process. Appl. 119 676–678. MR2494009 10.1016/j.spa.2008.02.010[20] Masuda, H. (2009). Erratum to: “Ergodicity and exponential $\beta$-mixing bound for multidimensional diffusions with jumps” [Stochastic Process. Appl. 117 (2007) 35–56] [MR2287102]. Stochastic Process. Appl. 119 676–678. MR2494009 10.1016/j.spa.2008.02.010

21.

[21] Masuda, H. (2010). Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes. Electron. J. Stat. 4 525–565. 1329.62364 10.1214/10-EJS565[21] Masuda, H. (2010). Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes. Electron. J. Stat. 4 525–565. 1329.62364 10.1214/10-EJS565

22.

[22] Masuda, H. (2013). Convergence of Gaussian quasi-likelihood random fields for ergodic Lévy driven SDE observed at high frequency. Ann. Statist. 41 1593–1641. MR3113823 1292.62124 10.1214/13-AOS1121 euclid.aos/1375362561[22] Masuda, H. (2013). Convergence of Gaussian quasi-likelihood random fields for ergodic Lévy driven SDE observed at high frequency. Ann. Statist. 41 1593–1641. MR3113823 1292.62124 10.1214/13-AOS1121 euclid.aos/1375362561

23.

[23] Merton, R. (1976). Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3 125–144. 1131.91344 10.1016/0304-405X(76)90022-2[23] Merton, R. (1976). Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3 125–144. 1131.91344 10.1016/0304-405X(76)90022-2

24.

[24] Ogihara, T. and Yoshida, N. (2011). Quasi-likelihood analysis for the stochastic differential equation with jumps. Stat. Inference Stoch. Process. 14 189–229. 1225.62114 10.1007/s11203-011-9057-z[24] Ogihara, T. and Yoshida, N. (2011). Quasi-likelihood analysis for the stochastic differential equation with jumps. Stat. Inference Stoch. Process. 14 189–229. 1225.62114 10.1007/s11203-011-9057-z

25.

[25] Revuz, D. and Yor, M. (1991). Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin. 0731.60002[25] Revuz, D. and Yor, M. (1991). Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin. 0731.60002

26.

[26] Shimizu, Y. (2006). $M$-estimation for discretely observed ergodic diffusion processes with infinitely many jumps. Stat. Inference Stoch. Process. 9 179–225.[26] Shimizu, Y. (2006). $M$-estimation for discretely observed ergodic diffusion processes with infinitely many jumps. Stat. Inference Stoch. Process. 9 179–225.

27.

[27] Shimizu, Y. (2008). Some remarks on estimation of diffusion coefficients for jump-diffusions from finite samples. Bull. Inform. Cybernet. 40 51–60. 1270.60089[27] Shimizu, Y. (2008). Some remarks on estimation of diffusion coefficients for jump-diffusions from finite samples. Bull. Inform. Cybernet. 40 51–60. 1270.60089

28.

[28] Shimizu, Y. (2008). A practical inference for discretely observed jump-diffusions from finite samples. J. Japan Statist. Soc. 38 391–413. MR2510946 1248.60096 10.14490/jjss.38.391[28] Shimizu, Y. (2008). A practical inference for discretely observed jump-diffusions from finite samples. J. Japan Statist. Soc. 38 391–413. MR2510946 1248.60096 10.14490/jjss.38.391

29.

[29] Shimizu, Y. and Yoshida, N. (2006). Estimation of parameters for diffusion processes with jumps from discrete observations. Stat. Inference Stoch. Process. 9 227–277. 1125.62089 10.1007/s11203-005-8114-x[29] Shimizu, Y. and Yoshida, N. (2006). Estimation of parameters for diffusion processes with jumps from discrete observations. Stat. Inference Stoch. Process. 9 227–277. 1125.62089 10.1007/s11203-005-8114-x

30.

[30] Tran, N. K. (2014). LAN property for jump diffusion processes with discrete observations via Malliavin calculus Ph.D. thesis Univ. Paris 13.[30] Tran, N. K. (2014). LAN property for jump diffusion processes with discrete observations via Malliavin calculus Ph.D. thesis Univ. Paris 13.

31.

[31] van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge Univ. Press, Cambridge.[31] van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge Univ. Press, Cambridge.

32.

[32] Yoshida, N. (1992). Estimation for diffusion processes from discrete observation. J. Multivariate Anal. 41 220–242. 0811.62083 10.1016/0047-259X(92)90068-Q[32] Yoshida, N. (1992). Estimation for diffusion processes from discrete observation. J. Multivariate Anal. 41 220–242. 0811.62083 10.1016/0047-259X(92)90068-Q
Copyright © 2018 Institute of Mathematical Statistics
Arnaud Gloter, Dasha Loukianova, and Hilmar Mai "Jump filtering and efficient drift estimation for Lévy-driven SDEs," The Annals of Statistics 46(4), 1445-1480, (August 2018). https://doi.org/10.1214/17-AOS1591
Received: 1 March 2016; Published: August 2018
Vol.46 • No. 4 • August 2018
Back to Top