Open Access
April 2018 Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications
Xiaohui Chen
Ann. Statist. 46(2): 642-678 (April 2018). DOI: 10.1214/17-AOS1563
Abstract

This paper studies the Gaussian and bootstrap approximations for the probabilities of a nondegenerate U-statistic belonging to the hyperrectangles in $\mathbb{R}^{d}$ when the dimension $d$ is large. A two-step Gaussian approximation procedure that does not impose structural assumptions on the data distribution is proposed. Subject to mild moment conditions on the kernel, we establish the explicit rate of convergence uniformly in the class of all hyperrectangles in $\mathbb{R}^{d}$ that decays polynomially in sample size for a high-dimensional scaling limit, where the dimension can be much larger than the sample size. We also provide computable approximation methods for the quantiles of the maxima of centered U-statistics. Specifically, we provide a unified perspective for the empirical bootstrap, the randomly reweighted bootstrap and the Gaussian multiplier bootstrap with the jackknife estimator of covariance matrix as randomly reweighted quadratic forms and we establish their validity. We show that all three methods are inferentially first-order equivalent for high-dimensional U-statistics in the sense that they achieve the same uniform rate of convergence over all $d$-dimensional hyperrectangles. In particular, they are asymptotically valid when the dimension $d$ can be as large as $O(e^{n^{c}})$ for some constant $c\in(0,1/7)$.

The bootstrap methods are applied to statistical applications for high-dimensional non-Gaussian data including: (i) principled and data-dependent tuning parameter selection for regularized estimation of the covariance matrix and its related functionals; (ii) simultaneous inference for the covariance and rank correlation matrices. In particular, for the thresholded covariance matrix estimator with the bootstrap selected tuning parameter, we show that for a class of sub-Gaussian data, error bounds of the bootstrapped thresholded covariance matrix estimator can be much tighter than those of the minimax estimator with a universal threshold. In addition, we also show that the Gaussian-like convergence rates can be achieved for heavy-tailed data, which are less conservative than those obtained by the Bonferroni technique that ignores the dependency in the underlying data distribution.

References

1.

[1] Adamczak, R. (2008). A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. Electron. J. Probab. 13 1000–1034. 1190.60010 10.1214/EJP.v13-521[1] Adamczak, R. (2008). A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. Electron. J. Probab. 13 1000–1034. 1190.60010 10.1214/EJP.v13-521

2.

[2] Arcones, M. A. and Giné, E. (1992). On the bootstrap of $U$ and $V$ statistics. Ann. Statist. 20 655–674.[2] Arcones, M. A. and Giné, E. (1992). On the bootstrap of $U$ and $V$ statistics. Ann. Statist. 20 655–674.

3.

[3] Arcones, M. A. and Giné, E. (1993). Limit theorems for $U$-processes. Ann. Probab. 21 1494–1542.[3] Arcones, M. A. and Giné, E. (1993). Limit theorems for $U$-processes. Ann. Probab. 21 1494–1542.

4.

[4] Bentkus, V. (2003). On the dependence of the Berry–Esseen bound on dimension. J. Statist. Plann. Inference 113 385–402. 1017.60023 10.1016/S0378-3758(02)00094-0[4] Bentkus, V. (2003). On the dependence of the Berry–Esseen bound on dimension. J. Statist. Plann. Inference 113 385–402. 1017.60023 10.1016/S0378-3758(02)00094-0

5.

[5] Bentkus, V., Götze, F. and van Zwet, W. R. (1997). An Edgeworth expansion for symmetric statistics. Ann. Statist. 25 851–896. 0920.62016 10.1214/aos/1031833676 euclid.aos/1031833676[5] Bentkus, V., Götze, F. and van Zwet, W. R. (1997). An Edgeworth expansion for symmetric statistics. Ann. Statist. 25 851–896. 0920.62016 10.1214/aos/1031833676 euclid.aos/1031833676

6.

[6] Bentkus, V. Y. (1985). Lower bounds for the rate of convergence in the central limit theorem in Banach spaces. Litovsk. Mat. Sb. 25 10–21. 0588.60010[6] Bentkus, V. Y. (1985). Lower bounds for the rate of convergence in the central limit theorem in Banach spaces. Litovsk. Mat. Sb. 25 10–21. 0588.60010

7.

[7] Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap. Ann. Statist. 9 1196–1217. 0449.62034 10.1214/aos/1176345637 euclid.aos/1176345637[7] Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap. Ann. Statist. 9 1196–1217. 0449.62034 10.1214/aos/1176345637 euclid.aos/1176345637

8.

[8] Bickel, P. J., Götze, F. and van Zwet, W. R. (1986). The Edgeworth expansion for $U$-statistics of degree two. Ann. Statist. 14 1463–1484. 0614.62015 10.1214/aos/1176350170 euclid.aos/1176350170[8] Bickel, P. J., Götze, F. and van Zwet, W. R. (1986). The Edgeworth expansion for $U$-statistics of degree two. Ann. Statist. 14 1463–1484. 0614.62015 10.1214/aos/1176350170 euclid.aos/1176350170

9.

[9] Bickel, P. J. and Levina, E. (2008). Covariance regularization by thresholding. Ann. Statist. 36 2577–2604. 1196.62062 10.1214/08-AOS600 euclid.aos/1231165180[9] Bickel, P. J. and Levina, E. (2008). Covariance regularization by thresholding. Ann. Statist. 36 2577–2604. 1196.62062 10.1214/08-AOS600 euclid.aos/1231165180

10.

[10] Bickel, P. J. and Levina, E. (2008). Regularized estimation of large covariance matrices. Ann. Statist. 36 199–227. 1132.62040 10.1214/009053607000000758 euclid.aos/1201877299[10] Bickel, P. J. and Levina, E. (2008). Regularized estimation of large covariance matrices. Ann. Statist. 36 199–227. 1132.62040 10.1214/009053607000000758 euclid.aos/1201877299

11.

[11] Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer, Heidelberg.[11] Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer, Heidelberg.

12.

[12] Cai, T., Liu, W. and Luo, X. (2011). A constrained $\ell_{1}$ minimization approach to sparse precision matrix estimation. J. Amer. Statist. Assoc. 106 594–607.[12] Cai, T., Liu, W. and Luo, X. (2011). A constrained $\ell_{1}$ minimization approach to sparse precision matrix estimation. J. Amer. Statist. Assoc. 106 594–607.

13.

[13] Cai, T. T. and Zhou, H. H. (2012). Optimal rates of convergence for sparse covariance matrix estimation. Ann. Statist. 40 2389–2420. 1373.62247 10.1214/12-AOS998 euclid.aos/1359987525[13] Cai, T. T. and Zhou, H. H. (2012). Optimal rates of convergence for sparse covariance matrix estimation. Ann. Statist. 40 2389–2420. 1373.62247 10.1214/12-AOS998 euclid.aos/1359987525

14.

[14] Callaert, H. and Veraverbeke, N. (1981). The order of the normal approximation for a studentized $U$-statistic. Ann. Statist. 9 194–200. 0457.62018 10.1214/aos/1176345347 euclid.aos/1176345347[14] Callaert, H. and Veraverbeke, N. (1981). The order of the normal approximation for a studentized $U$-statistic. Ann. Statist. 9 194–200. 0457.62018 10.1214/aos/1176345347 euclid.aos/1176345347

15.

[15] Chang, J., Zhou, W., Zhou, W.-X. and Wang, L. (2017). Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering. Biometrics 73 31–41. 1366.62206 10.1111/biom.12552[15] Chang, J., Zhou, W., Zhou, W.-X. and Wang, L. (2017). Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering. Biometrics 73 31–41. 1366.62206 10.1111/biom.12552

16.

[16] Chen, L. H. Y., Fang, X. and Shao, Q.-M. (2013). From Stein identities to moderate deviations. Ann. Probab. 41 262–293. 1275.60029 10.1214/12-AOP746 euclid.aop/1358951987[16] Chen, L. H. Y., Fang, X. and Shao, Q.-M. (2013). From Stein identities to moderate deviations. Ann. Probab. 41 262–293. 1275.60029 10.1214/12-AOP746 euclid.aop/1358951987

17.

[17] Chen, S. X., Zhang, L.-X. and Zhong, P.-S. (2010). Tests for high-dimensional covariance matrices. J. Amer. Statist. Assoc. 105 810–819. 1321.62086 10.1198/jasa.2010.tm09560[17] Chen, S. X., Zhang, L.-X. and Zhong, P.-S. (2010). Tests for high-dimensional covariance matrices. J. Amer. Statist. Assoc. 105 810–819. 1321.62086 10.1198/jasa.2010.tm09560

18.

[18] Chen, X. (2016). Gaussian approximation for the sup-norm of high-dimensional matrix-variate U-statistics and its applications. Preprint. Available at  arXiv:1602.001991602.00199[18] Chen, X. (2016). Gaussian approximation for the sup-norm of high-dimensional matrix-variate U-statistics and its applications. Preprint. Available at  arXiv:1602.001991602.00199

19.

[19] Chen, X. (2018). Supplement to “Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications.”  DOI:10.1214/17-AOS1563SUPP.[19] Chen, X. (2018). Supplement to “Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications.”  DOI:10.1214/17-AOS1563SUPP.

20.

[20] Chen, X., Xu, M. and Wu, W. B. (2013). Covariance and precision matrix estimation for high-dimensional time series. Ann. Statist. 41 2994–3021. 1294.62123 10.1214/13-AOS1182 euclid.aos/1388545676[20] Chen, X., Xu, M. and Wu, W. B. (2013). Covariance and precision matrix estimation for high-dimensional time series. Ann. Statist. 41 2994–3021. 1294.62123 10.1214/13-AOS1182 euclid.aos/1388545676

21.

[21] Chen, X., Xu, M. and Wu, W. B. (2016). Regularized estimation of linear functionals of precision matrices for high-dimensional time series. IEEE Trans. Signal Process. 64 6459–6470.[21] Chen, X., Xu, M. and Wu, W. B. (2016). Regularized estimation of linear functionals of precision matrices for high-dimensional time series. IEEE Trans. Signal Process. 64 6459–6470.

22.

[22] Chernozhukov, V., Chetverikov, D. and Kato, K. (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist. 41 2786–2819. 1292.62030 10.1214/13-AOS1161 euclid.aos/1387313390[22] Chernozhukov, V., Chetverikov, D. and Kato, K. (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist. 41 2786–2819. 1292.62030 10.1214/13-AOS1161 euclid.aos/1387313390

23.

[23] Chernozhukov, V., Chetverikov, D. and Kato, K. (2015). Comparison and anti-concentration bounds for maxima of Gaussian random vectors. Probab. Theory Related Fields 162 47–70. 1319.60072 10.1007/s00440-014-0565-9[23] Chernozhukov, V., Chetverikov, D. and Kato, K. (2015). Comparison and anti-concentration bounds for maxima of Gaussian random vectors. Probab. Theory Related Fields 162 47–70. 1319.60072 10.1007/s00440-014-0565-9

24.

[24] Chernozhukov, V., Chetverikov, D. and Kato, K. (2017). Central limit theorems and bootstrap in high dimensions. Ann. Probab. 45 2309–2352. 1377.60040 10.1214/16-AOP1113 euclid.aop/1502438428[24] Chernozhukov, V., Chetverikov, D. and Kato, K. (2017). Central limit theorems and bootstrap in high dimensions. Ann. Probab. 45 2309–2352. 1377.60040 10.1214/16-AOP1113 euclid.aop/1502438428

25.

[25] DasGupta, A., Lahiri, S. N. and Stoyanov, J. (2014). Sharp fixed $n$ bounds and asymptotic expansions for the mean and the median of a Gaussian sample maximum, and applications to the Donoho–Jin model. Stat. Methodol. 20 40–62.[25] DasGupta, A., Lahiri, S. N. and Stoyanov, J. (2014). Sharp fixed $n$ bounds and asymptotic expansions for the mean and the median of a Gaussian sample maximum, and applications to the Donoho–Jin model. Stat. Methodol. 20 40–62.

26.

[26] Dehling, H. and Mikosch, T. (1994). Random quadratic forms and the bootstrap for $U$-statistics. J. Multivariate Anal. 51 392–413. 0815.62028 10.1006/jmva.1994.1069[26] Dehling, H. and Mikosch, T. (1994). Random quadratic forms and the bootstrap for $U$-statistics. J. Multivariate Anal. 51 392–413. 0815.62028 10.1006/jmva.1994.1069

27.

[27] Dempster, A. P. (1972). Covariance selection. Biometrics 28 157–175.[27] Dempster, A. P. (1972). Covariance selection. Biometrics 28 157–175.

28.

[28] de la Peña, V. c. H. and Giné, E. (1999). Decoupling: From Dependence to Independence, Randomly Stopped Processes. $U$-Statistics and Processes. Martingales and Beyond. Springer, New York. MR1666908[28] de la Peña, V. c. H. and Giné, E. (1999). Decoupling: From Dependence to Independence, Randomly Stopped Processes. $U$-Statistics and Processes. Martingales and Beyond. Springer, New York. MR1666908

29.

[29] Einmahl, U. and Li, D. (2008). Characterization of LIL behavior in Banach space. Trans. Amer. Math. Soc. 360 6677–6693. 1181.60010 10.1090/S0002-9947-08-04522-4[29] Einmahl, U. and Li, D. (2008). Characterization of LIL behavior in Banach space. Trans. Amer. Math. Soc. 360 6677–6693. 1181.60010 10.1090/S0002-9947-08-04522-4

30.

[30] El Karoui, N. (2008). Operator norm consistent estimation of large-dimensional sparse covariance matrices. Ann. Statist. 36 2717–2756. 1196.62064 10.1214/07-AOS559 euclid.aos/1231165183[30] El Karoui, N. (2008). Operator norm consistent estimation of large-dimensional sparse covariance matrices. Ann. Statist. 36 2717–2756. 1196.62064 10.1214/07-AOS559 euclid.aos/1231165183

31.

[31] Fan, J., Liao, Y. and Mincheva, M. (2011). High-dimensional covariance matrix estimation in approximate factor models. Ann. Statist. 39 3320–3356. 1246.62151 10.1214/11-AOS944 euclid.aos/1330958681[31] Fan, J., Liao, Y. and Mincheva, M. (2011). High-dimensional covariance matrix estimation in approximate factor models. Ann. Statist. 39 3320–3356. 1246.62151 10.1214/11-AOS944 euclid.aos/1330958681

32.

[32] Giné, E., Latała, R. and Zinn, J. (2000). Exponential and moment inequalities for $U$-statistics. In High Dimensional Probability, II (Seattle, WA, 1999). Progress in Probability 47 13–38. Birkhäuser, Boston, MA.[32] Giné, E., Latała, R. and Zinn, J. (2000). Exponential and moment inequalities for $U$-statistics. In High Dimensional Probability, II (Seattle, WA, 1999). Progress in Probability 47 13–38. Birkhäuser, Boston, MA.

33.

[33] Götze, F. (1987). Approximations for multivariate $U$-statistics. J. Multivariate Anal. 22 212–229.[33] Götze, F. (1987). Approximations for multivariate $U$-statistics. J. Multivariate Anal. 22 212–229.

34.

[34] Gregory, G. G. (1977). Large sample theory for $U$-statistics and tests of fit. Ann. Statist. 5 110–123.[34] Gregory, G. G. (1977). Large sample theory for $U$-statistics and tests of fit. Ann. Statist. 5 110–123.

35.

[35] Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19 293–325. 0032.04101 10.1214/aoms/1177730196 euclid.aoms/1177730196[35] Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19 293–325. 0032.04101 10.1214/aoms/1177730196 euclid.aoms/1177730196

36.

[36] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13–30. 0127.10602 10.1080/01621459.1963.10500830[36] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13–30. 0127.10602 10.1080/01621459.1963.10500830

37.

[37] Houdré, C. and Reynaud-Bouret, P. (2003). Exponential inequalities, with constants, for U-statistics of order two. In Stochastic Inequalities and Applications. Progress in Probability 56 55–69. Birkhäuser, Basel. 1036.60015[37] Houdré, C. and Reynaud-Bouret, P. (2003). Exponential inequalities, with constants, for U-statistics of order two. In Stochastic Inequalities and Applications. Progress in Probability 56 55–69. Birkhäuser, Basel. 1036.60015

38.

[38] Hsing, T. and Wu, W. B. (2004). On weighted $U$-statistics for stationary processes. Ann. Probab. 32 1600–1631. 1049.62099 10.1214/009117904000000333 euclid.aop/1084884864[38] Hsing, T. and Wu, W. B. (2004). On weighted $U$-statistics for stationary processes. Ann. Probab. 32 1600–1631. 1049.62099 10.1214/009117904000000333 euclid.aop/1084884864

39.

[39] Hušková, M. and Janssen, P. (1993). Consistency of the generalized bootstrap for degenerate $U$-statistics. Ann. Statist. 21 1811–1823. MR1245770 0797.62036 10.1214/aos/1176349399 euclid.aos/1176349399[39] Hušková, M. and Janssen, P. (1993). Consistency of the generalized bootstrap for degenerate $U$-statistics. Ann. Statist. 21 1811–1823. MR1245770 0797.62036 10.1214/aos/1176349399 euclid.aos/1176349399

40.

[40] Hušková, M. and Janssen, P. (1993). Generalized bootstrap for studentized $U$-statistics: A rank statistic approach. Statist. Probab. Lett. 16 225–233. 0777.62044 10.1016/0167-7152(93)90147-B[40] Hušková, M. and Janssen, P. (1993). Generalized bootstrap for studentized $U$-statistics: A rank statistic approach. Statist. Probab. Lett. 16 225–233. 0777.62044 10.1016/0167-7152(93)90147-B

41.

[41] Janssen, P. (1994). Weighted bootstrapping of $U$-statistics. J. Statist. Plann. Inference 38 31–41.[41] Janssen, P. (1994). Weighted bootstrapping of $U$-statistics. J. Statist. Plann. Inference 38 31–41.

42.

[42] Klein, T. and Rio, E. (2005). Concentration around the mean for maxima of empirical processes. Ann. Probab. 33 1060–1077. 1066.60023 10.1214/009117905000000044 euclid.aop/1115386718[42] Klein, T. and Rio, E. (2005). Concentration around the mean for maxima of empirical processes. Ann. Probab. 33 1060–1077. 1066.60023 10.1214/009117905000000044 euclid.aop/1115386718

43.

[43] Lam, C. and Fan, J. (2009). Sparsistency and rates of convergence in large covariance matrix estimation. Ann. Statist. 37 4254–4278. 1191.62101 10.1214/09-AOS720 euclid.aos/1256303543[43] Lam, C. and Fan, J. (2009). Sparsistency and rates of convergence in large covariance matrix estimation. Ann. Statist. 37 4254–4278. 1191.62101 10.1214/09-AOS720 euclid.aos/1256303543

44.

[44] Lam, C. and Yao, Q. (2012). Factor modeling for high-dimensional time series: Inference for the number of factors. Ann. Statist. 40 694–726. 1273.62214 10.1214/12-AOS970 euclid.aos/1337268209[44] Lam, C. and Yao, Q. (2012). Factor modeling for high-dimensional time series: Inference for the number of factors. Ann. Statist. 40 694–726. 1273.62214 10.1214/12-AOS970 euclid.aos/1337268209

45.

[45] Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces: Isoperimetry and Processes. Ergebnisse der Mathematik und Ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 23. Springer, Berlin. 0748.60004[45] Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces: Isoperimetry and Processes. Ergebnisse der Mathematik und Ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 23. Springer, Berlin. 0748.60004

46.

[46] Lehmann, E. L. (1999). Elements of Large-Sample Theory. Springer, New York. MR1663158 0914.62001[46] Lehmann, E. L. (1999). Elements of Large-Sample Theory. Springer, New York. MR1663158 0914.62001

47.

[47] Lo, A. Y. (1987). A large sample study of the Bayesian bootstrap. Ann. Statist. 15 360–375. 0617.62032 10.1214/aos/1176350271 euclid.aos/1176350271[47] Lo, A. Y. (1987). A large sample study of the Bayesian bootstrap. Ann. Statist. 15 360–375. 0617.62032 10.1214/aos/1176350271 euclid.aos/1176350271

48.

[48] Mai, Q., Zou, H. and Yuan, M. (2012). A direct approach to sparse discriminant analysis in ultra-high dimensions. Biometrika 99 29–42. 06019776 10.1093/biomet/asr066[48] Mai, Q., Zou, H. and Yuan, M. (2012). A direct approach to sparse discriminant analysis in ultra-high dimensions. Biometrika 99 29–42. 06019776 10.1093/biomet/asr066

49.

[49] Mason, D. M. and Newton, M. A. (1992). A rank statistics approach to the consistency of a general bootstrap. Ann. Statist. 20 1611–1624. 0777.62045 10.1214/aos/1176348787 euclid.aos/1176348787[49] Mason, D. M. and Newton, M. A. (1992). A rank statistics approach to the consistency of a general bootstrap. Ann. Statist. 20 1611–1624. 0777.62045 10.1214/aos/1176348787 euclid.aos/1176348787

50.

[50] Massart, P. (2000). About the constants in Talagrand’s concentration inequalities for empirical processes. Ann. Probab. 28 863–884. 1140.60310 10.1214/aop/1019160263 euclid.aop/1019160263[50] Massart, P. (2000). About the constants in Talagrand’s concentration inequalities for empirical processes. Ann. Probab. 28 863–884. 1140.60310 10.1214/aop/1019160263 euclid.aop/1019160263

51.

[51] Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436–1462. 1113.62082 10.1214/009053606000000281 euclid.aos/1152540754[51] Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436–1462. 1113.62082 10.1214/009053606000000281 euclid.aos/1152540754

52.

[52] Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley, New York. 0556.62028[52] Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley, New York. 0556.62028

53.

[53] Nagaev, S. V. (1979). Large deviations of sums of independent random variables. Ann. Probab. 7 745–789. 0418.60033 10.1214/aop/1176994938 euclid.aop/1176994938[53] Nagaev, S. V. (1979). Large deviations of sums of independent random variables. Ann. Probab. 7 745–789. 0418.60033 10.1214/aop/1176994938 euclid.aop/1176994938

54.

[54] Peng, J., Wang, P., Zhou, N. and Zhu, J. (2009). Partial correlation estimation by joint sparse regression models. J. Amer. Statist. Assoc. 104 735–746. MR2541591 06441092 10.1198/jasa.2009.0126[54] Peng, J., Wang, P., Zhou, N. and Zhu, J. (2009). Partial correlation estimation by joint sparse regression models. J. Amer. Statist. Assoc. 104 735–746. MR2541591 06441092 10.1198/jasa.2009.0126

55.

[55] Petrov, V. V. (1975). Sums of Independent Random Variables. Springer, New York. 0322.60042[55] Petrov, V. V. (1975). Sums of Independent Random Variables. Springer, New York. 0322.60042

56.

[56] Portnoy, S. (1986). On the central limit theorem in $\mathbf{R}^{p}$ when $p\to\infty$. Probab. Theory Related Fields 73 571–583.[56] Portnoy, S. (1986). On the central limit theorem in $\mathbf{R}^{p}$ when $p\to\infty$. Probab. Theory Related Fields 73 571–583.

57.

[57] Præstgaard, J. and Wellner, J. A. (1993). Exchangeably weighted bootstraps of the general empirical process. Ann. Probab. 21 2053–2086. 0792.62038 10.1214/aop/1176989011 euclid.aop/1176989011[57] Præstgaard, J. and Wellner, J. A. (1993). Exchangeably weighted bootstraps of the general empirical process. Ann. Probab. 21 2053–2086. 0792.62038 10.1214/aop/1176989011 euclid.aop/1176989011

58.

[58] Rothman, A. J., Bickel, P. J., Levina, E. and Zhu, J. (2008). Sparse permutation invariant covariance estimation. Electron. J. Stat. 2 494–515. 1320.62135 10.1214/08-EJS176[58] Rothman, A. J., Bickel, P. J., Levina, E. and Zhu, J. (2008). Sparse permutation invariant covariance estimation. Electron. J. Stat. 2 494–515. 1320.62135 10.1214/08-EJS176

59.

[59] Rubin, D. B. (1981). The Bayesian bootstrap. Ann. Statist. 9 130–134. MR600538 10.1214/aos/1176345338 euclid.aos/1176345338[59] Rubin, D. B. (1981). The Bayesian bootstrap. Ann. Statist. 9 130–134. MR600538 10.1214/aos/1176345338 euclid.aos/1176345338

60.

[60] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York. 0538.62002[60] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York. 0538.62002

61.

[61] Shao, Q.-M. and Wang, Q. (2013). Self-normalized limit theorems: A survey. Probab. Surv. 10 69–93. 1286.60029 10.1214/13-PS216[61] Shao, Q.-M. and Wang, Q. (2013). Self-normalized limit theorems: A survey. Probab. Surv. 10 69–93. 1286.60029 10.1214/13-PS216

62.

[62] Talagrand, M. (1996). New concentration inequalities in product spaces. Invent. Math. 126 505–563. 0893.60001 10.1007/s002220050108[62] Talagrand, M. (1996). New concentration inequalities in product spaces. Invent. Math. 126 505–563. 0893.60001 10.1007/s002220050108

63.

[63] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer, New York. 0862.60002[63] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer, New York. 0862.60002

64.

[64] Vershynin, R. (2012). Introduction to the non-asymptotic analysis of random matrices. In Compressed Sensing 210–268. Cambridge Univ. Press, Cambridge.[64] Vershynin, R. (2012). Introduction to the non-asymptotic analysis of random matrices. In Compressed Sensing 210–268. Cambridge Univ. Press, Cambridge.

65.

[65] Wang, Q. and Jing, B.-Y. (2004). Weighted bootstrap for $U$-statistics. J. Multivariate Anal. 91 177–198.[65] Wang, Q. and Jing, B.-Y. (2004). Weighted bootstrap for $U$-statistics. J. Multivariate Anal. 91 177–198.

66.

[66] Yuan, M. (2010). High dimensional inverse covariance matrix estimation via linear programming. J. Mach. Learn. Res. 11 2261–2286. 1242.62043[66] Yuan, M. (2010). High dimensional inverse covariance matrix estimation via linear programming. J. Mach. Learn. Res. 11 2261–2286. 1242.62043

67.

[67] Yuan, M. and Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika 94 19–35. 1142.62408 10.1093/biomet/asm018[67] Yuan, M. and Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika 94 19–35. 1142.62408 10.1093/biomet/asm018

68.

[68] Zhang, C.-H. (1999). Sub-Bernoulli functions, moment inequalities and strong laws for nonnegative and symmetrized $U$-statistics. Ann. Probab. 27 432–453.[68] Zhang, C.-H. (1999). Sub-Bernoulli functions, moment inequalities and strong laws for nonnegative and symmetrized $U$-statistics. Ann. Probab. 27 432–453.

69.

[69] Zhang, D. and Wu, W. B. (2017). Gaussian approximation for high-dimensional time series. Ann. Statist. 45 1895–1919. MR3718156 1381.62254 10.1214/16-AOS1512 euclid.aos/1509436822[69] Zhang, D. and Wu, W. B. (2017). Gaussian approximation for high-dimensional time series. Ann. Statist. 45 1895–1919. MR3718156 1381.62254 10.1214/16-AOS1512 euclid.aos/1509436822

70.

[70] Zhang, X. and Cheng, G. (2014). Bootstrapping high dimensional time series. Available at  arXiv:1406.10371406.1037[70] Zhang, X. and Cheng, G. (2014). Bootstrapping high dimensional time series. Available at  arXiv:1406.10371406.1037
Copyright © 2018 Institute of Mathematical Statistics
Xiaohui Chen "Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications," The Annals of Statistics 46(2), 642-678, (April 2018). https://doi.org/10.1214/17-AOS1563
Received: 1 March 2016; Published: April 2018
Vol.46 • No. 2 • April 2018
Back to Top