Open Access
June 2016 Vector quantile regression: An optimal transport approach
Guillaume Carlier, Victor Chernozhukov, Alfred Galichon
Ann. Statist. 44(3): 1165-1192 (June 2016). DOI: 10.1214/15-AOS1401

Abstract

We propose a notion of conditional vector quantile function and a vector quantile regression. A conditional vector quantile function (CVQF) of a random vector $Y$, taking values in $\mathbb{R}^{d}$ given covariates $Z=z$, taking values in $\mathbb{R}^{k}$, is a map $u\longmapsto Q_{Y|Z}(u,z)$, which is monotone, in the sense of being a gradient of a convex function, and such that given that vector $U$ follows a reference non-atomic distribution $F_{U}$, for instance uniform distribution on a unit cube in $\mathbb{R}^{d}$, the random vector $Q_{Y|Z}(U,z)$ has the distribution of $Y$ conditional on $Z=z$. Moreover, we have a strong representation, $Y=Q_{Y|Z}(U,Z)$ almost surely, for some version of $U$. The vector quantile regression (VQR) is a linear model for CVQF of $Y$ given $Z$. Under correct specification, the notion produces strong representation, $Y=\beta (U)^{\top}f(Z)$, for $f(Z)$ denoting a known set of transformations of $Z$, where $u\longmapsto\beta(u)^{\top}f(Z)$ is a monotone map, the gradient of a convex function and the quantile regression coefficients $u\longmapsto\beta(u)$ have the interpretations analogous to that of the standard scalar quantile regression. As $f(Z)$ becomes a richer class of transformations of $Z$, the model becomes nonparametric, as in series modelling. A key property of VQR is the embedding of the classical Monge–Kantorovich’s optimal transportation problem at its core as a special case. In the classical case, where $Y$ is scalar, VQR reduces to a version of the classical QR, and CVQF reduces to the scalar conditional quantile function. An application to multiple Engel curve estimation is considered.

Citation

Download Citation

Guillaume Carlier. Victor Chernozhukov. Alfred Galichon. "Vector quantile regression: An optimal transport approach." Ann. Statist. 44 (3) 1165 - 1192, June 2016. https://doi.org/10.1214/15-AOS1401

Information

Received: 1 June 2015; Revised: 1 September 2015; Published: June 2016
First available in Project Euclid: 11 April 2016

zbMATH: 1381.62239
MathSciNet: MR3485957
Digital Object Identifier: 10.1214/15-AOS1401

Subjects:
Primary: 62J99
Secondary: 62G05 , 62H05

Keywords: Monge–Kantorovich–Brenier , vector conditional quantile function , Vector quantile regression

Rights: Copyright © 2016 Institute of Mathematical Statistics

Vol.44 • No. 3 • June 2016
Back to Top