Open Access
Translator Disclaimer
December 2010 Empirical dynamics for longitudinal data
Hans-Georg Müller, Fang Yao
Ann. Statist. 38(6): 3458-3486 (December 2010). DOI: 10.1214/09-AOS786

Abstract

We demonstrate that the processes underlying on-line auction price bids and many other longitudinal data can be represented by an empirical first order stochastic ordinary differential equation with time-varying coefficients and a smooth drift process. This equation may be empirically obtained from longitudinal observations for a sample of subjects and does not presuppose specific knowledge of the underlying processes. For the nonparametric estimation of the components of the differential equation, it suffices to have available sparsely observed longitudinal measurements which may be noisy and are generated by underlying smooth random trajectories for each subject or experimental unit in the sample. The drift process that drives the equation determines how closely individual process trajectories follow a deterministic approximation of the differential equation. We provide estimates for trajectories and especially the variance function of the drift process. At each fixed time point, the proposed empirical dynamic model implies a decomposition of the derivative of the process underlying the longitudinal data into a component explained by a linear component determined by a varying coefficient function dynamic equation and an orthogonal complement that corresponds to the drift process. An enhanced perturbation result enables us to obtain improved asymptotic convergence rates for eigenfunction derivative estimation and consistency for the varying coefficient function and the components of the drift process. We illustrate the differential equation with an application to the dynamics of on-line auction data.

Citation

Download Citation

Hans-Georg Müller. Fang Yao. "Empirical dynamics for longitudinal data." Ann. Statist. 38 (6) 3458 - 3486, December 2010. https://doi.org/10.1214/09-AOS786

Information

Published: December 2010
First available in Project Euclid: 30 November 2010

zbMATH: 1233.62069
MathSciNet: MR2766859
Digital Object Identifier: 10.1214/09-AOS786

Subjects:
Primary: 62G05 , 62G20

Keywords: Functional data analysis , Gaussian process , longitudinal data , Stochastic differential equation

Rights: Copyright © 2010 Institute of Mathematical Statistics

JOURNAL ARTICLE
29 PAGES


SHARE
Vol.38 • No. 6 • December 2010
Back to Top