Open Access
April 2004 Minimax estimation of linear functionals over nonconvex parameter spaces
T. Tony Cai, Mark G. Low
Author Affiliations +
Ann. Statist. 32(2): 552-576 (April 2004). DOI: 10.1214/009053604000000094

Abstract

The minimax theory for estimating linear functionals is extended to the case of a finite union of convex parameter spaces. Upper and lower bounds for the minimax risk can still be described in terms of a modulus of continuity. However in contrast to the theory for convex parameter spaces rate optimal procedures are often required to be nonlinear. A construction of such nonlinear procedures is given. The results developed in this paper have important applications to the theory of adaptation.

Citation

Download Citation

T. Tony Cai. Mark G. Low. "Minimax estimation of linear functionals over nonconvex parameter spaces." Ann. Statist. 32 (2) 552 - 576, April 2004. https://doi.org/10.1214/009053604000000094

Information

Published: April 2004
First available in Project Euclid: 28 April 2004

zbMATH: 1048.62054
MathSciNet: MR2060169
Digital Object Identifier: 10.1214/009053604000000094

Subjects:
Primary: 62G99
Secondary: 62C20 , 62F12 , 62M99

Keywords: Constrained risk inequality , linear functionals , minimax estimation , modulus of continuity , Nonparametric functional estimation , White noise model

Rights: Copyright © 2004 Institute of Mathematical Statistics

Vol.32 • No. 2 • April 2004
Back to Top