Open Access
November, 1975 Efficient Estimation of Transition Probabilities in a Markov Chain
Do Sun Bai
Ann. Statist. 3(6): 1305-1317 (November, 1975). DOI: 10.1214/aos/1176343286

Abstract

Let $\{X_1, \cdots, X_N\}$ be $N$ observations on an $m$-state Markov chain with stationary transition probability matrix $\mathbf{P} = (p_{ij}), p_{ij} > 0, i,j = 1,\cdots, m$, where $N$ is a random variable. For any parametric function of $\mathbf{P}$, the information inequality gives a lower bound on the variance of an unbiased estimator; attaining the lower bound depends on whether the sampling plan or stopping rule $S$, the estimator $f = f(X_1,\cdots, X_N)$, and the function $E(f) = g(\mathbf{P})$ are "efficient". All "efficient triples" $(S, f, g)$ are characterized for the Markov chain in which $p_{ij}$ and $p_{i'j'} (i' \neq i)$ are not related functionally. It is also shown that efficient triples do not exist if $m > 2$ and $g$ is a function of two or more rows of $\mathbf{P}$. For the case $m = 2$, efficient triples in which $g$'s are functions of both rows are characterized.

Citation

Download Citation

Do Sun Bai. "Efficient Estimation of Transition Probabilities in a Markov Chain." Ann. Statist. 3 (6) 1305 - 1317, November, 1975. https://doi.org/10.1214/aos/1176343286

Information

Published: November, 1975
First available in Project Euclid: 12 April 2007

zbMATH: 0323.62055
MathSciNet: MR383671
Digital Object Identifier: 10.1214/aos/1176343286

Subjects:
Primary: 62M05
Secondary: 62L12

Keywords: closed sampling plan , efficient triple , Information inequality , Markov chain , similar sampling plan , Transition probability

Rights: Copyright © 1975 Institute of Mathematical Statistics

Vol.3 • No. 6 • November, 1975
Back to Top