Abstract
It is not uncommon to find nonlinear patterns in the scatterplots of regressor variables. But how such findings affect standard regression analysis remains largely unexplored. This article offers a theory on nonlinear confounding, a term for describing the situation where a certain nonlinear relationship in regressors leads to difficulties in modeling and related analysis of the data. The theory begins with a measure of nonlinearity between two regressor variables. It is then used to assess nonlinearity between any two projections from the high-dimensional regressor and a method of finding most nonlinear projections is given. Nonlinear confounding is addressed by taking a fresh new look at fundamental issues such as the validity of prediction and inference, diagnostics, regression surface approximation, model uncertainty and Fisher information loss.
Citation
Ker-Chau Li. "Nonlinear confounding in high-dimensional regression." Ann. Statist. 25 (2) 577 - 612, April 1997. https://doi.org/10.1214/aos/1031833665
Information