Open Access
December 1996 A universally acceptable smoothing factor for kernel density estimates
Luc Devroye, Gábor Lugosi
Ann. Statist. 24(6): 2499-2512 (December 1996). DOI: 10.1214/aos/1032181164

Abstract

We define a minimum distance estimate of the smoothing factor for kernel density estimates, based on a methodology first developed by Yatracos. It is shown that if $f_{nh}$ denotes the kernel density estimate on $\mathbb{R}^d$ for an i.i.d. sample of size n drawn from an unknown density f, where h is the smoothing factor, and if $f_n$ is the kernel estimate with the same kernel and with the proposed new data-based smoothing factor, then, under a regularity condition on the kernel K, $$\sup_f \limsup_{n \to \infty} \frac{E \int | f_n - f|dx}{\inf_{h>0} E \int |f_{nh} - f|dx} \leq 3.$$ This is the first published smoothing factor that can be proven to have this property.

Citation

Download Citation

Luc Devroye. Gábor Lugosi. "A universally acceptable smoothing factor for kernel density estimates." Ann. Statist. 24 (6) 2499 - 2512, December 1996. https://doi.org/10.1214/aos/1032181164

Information

Published: December 1996
First available in Project Euclid: 16 September 2002

zbMATH: 0867.62024
MathSciNet: MR1425963
Digital Object Identifier: 10.1214/aos/1032181164

Subjects:
Primary: 62G05

Keywords: asymptotic optimality , convergence , Density estimation , kernel estimate , minimum distance estimate , smoothing factor

Rights: Copyright © 1996 Institute of Mathematical Statistics

Vol.24 • No. 6 • December 1996
Back to Top