Open Access
Translator Disclaimer
April, 1995 Efficient Estimation of Monotone Boundaries
A. P. Korostelev, L. Simar, A. B. Tsybakov
Ann. Statist. 23(2): 476-489 (April, 1995). DOI: 10.1214/aos/1176324531

Abstract

Let $g: \lbrack 0, 1\rbrack \rightarrow \lbrack 0, 1\rbrack$ be a monotone nondecreasing function and let $G$ be the closure of the set $\{(x, y) \in \lbrack 0, 1\rbrack \times \lbrack 0, 1\rbrack: 0 \leq y \leq g (x)\}$. We consider the problem of estimating the set $G$ from a sample of i.i.d. observations uniformly distributed in $G$. The estimation error is measured in the Hausdorff metric. We propose the estimator which is asymptotically efficient in the minimax sense.

Citation

Download Citation

A. P. Korostelev. L. Simar. A. B. Tsybakov. "Efficient Estimation of Monotone Boundaries." Ann. Statist. 23 (2) 476 - 489, April, 1995. https://doi.org/10.1214/aos/1176324531

Information

Published: April, 1995
First available in Project Euclid: 11 April 2007

zbMATH: 0829.62043
MathSciNet: MR1332577
Digital Object Identifier: 10.1214/aos/1176324531

Subjects:
Primary: 62G05
Secondary: 62G20

Rights: Copyright © 1995 Institute of Mathematical Statistics

JOURNAL ARTICLE
14 PAGES


SHARE
Vol.23 • No. 2 • April, 1995
Back to Top