Open Access
September, 1992 An Improved Sequential Procedure for Estimating the Regression Parameter in Regression Models with Symmetric Errors
T. N. Sriram
Ann. Statist. 20(3): 1441-1453 (September, 1992). DOI: 10.1214/aos/1176348777

Abstract

A sequential procedure for estimating the regression parameter $\beta \in R^k$ in a regression model with symmetric errors is proposed. This procedure is shown to have asymptotically smaller regret than the procedure analyzed by Martinsek when $\mathbf{\beta} = \mathbf{0}$, and the same asymptotic regret as that procedure when $\mathbf{\beta} \neq \mathbf{0}$. Consequently, even when the errors are normally distributed, it follows that the asymptotic regret can be negative when $\mathbf{\beta} = \mathbf{0}$. These results extend a recent work of Takada dealing with the estimation of the normal mean, to both regression and nonnormal cases.

Citation

Download Citation

T. N. Sriram. "An Improved Sequential Procedure for Estimating the Regression Parameter in Regression Models with Symmetric Errors." Ann. Statist. 20 (3) 1441 - 1453, September, 1992. https://doi.org/10.1214/aos/1176348777

Information

Published: September, 1992
First available in Project Euclid: 12 April 2007

zbMATH: 0782.62079
MathSciNet: MR1186258
Digital Object Identifier: 10.1214/aos/1176348777

Subjects:
Primary: 62L12
Secondary: 60G40 , 62J05

Keywords: least squares estimate , regression , regret , Sequential procedure , stopping rule

Rights: Copyright © 1992 Institute of Mathematical Statistics

Vol.20 • No. 3 • September, 1992
Back to Top