Abstract
The notion of a bootstrap estimator of the distribution of the maximum likelihood estimator in log-linear models is defined for common sampling models. It is shown that the bootstrap estimator is consistent under assumptions which allow the dimension of the model to increase to infinity. Such an approach allows treatment of large, sparse contingency tables.
Citation
Wilhelm Sauermann. "Bootstrapping the Maximum Likelihood Estimator in High-Dimensional Log-Linear Models." Ann. Statist. 17 (3) 1198 - 1216, September, 1989. https://doi.org/10.1214/aos/1176347264
Information