Open Access
March, 1987 A Comparison of Cross-Validation Techniques in Density Estimation
J. S. Marron
Ann. Statist. 15(1): 152-162 (March, 1987). DOI: 10.1214/aos/1176350258

Abstract

In the setting of nonparametric multivariate density estimation, theorems are established which allow a comparison of the Kullback-Leibler and the least-squares cross-validation methods of smoothing parameter selection. The family of delta sequence estimators (including kernel, orthogonal series, histogram and histospline estimators) is considered. These theorems also show that either type of cross validation can be used to compare different estimators (e.g., kernel versus orthogonal series).

Citation

Download Citation

J. S. Marron. "A Comparison of Cross-Validation Techniques in Density Estimation." Ann. Statist. 15 (1) 152 - 162, March, 1987. https://doi.org/10.1214/aos/1176350258

Information

Published: March, 1987
First available in Project Euclid: 12 April 2007

zbMATH: 0619.62032
MathSciNet: MR885729
Digital Object Identifier: 10.1214/aos/1176350258

Subjects:
Primary: 62G05
Secondary: 62G20

Keywords: Bandwidth selection , choice of nonparametric estimators , Cross validation , smoothing parameter selection

Rights: Copyright © 1987 Institute of Mathematical Statistics

Vol.15 • No. 1 • March, 1987
Back to Top