Open Access
December, 1986 Curvatures for Parameter Subsets in Nonlinear Regression
R. Dennis Cook, Miriam L. Goldberg
Ann. Statist. 14(4): 1399-1418 (December, 1986). DOI: 10.1214/aos/1176350166

Abstract

The relative curvature measures of nonlinearity proposed by Bates and Watts (1980) are extended to an arbitrary subset of the parameters in a normal, nonlinear regression model. In particular, the subset curvatures proposed indicate the validity of linearization-based approximate confidence intervals for single parameters. The derivation produces the original Bates-Watts measures directly from the likelihood function. When the intrinsic curvature is negligible, the Bates-Watts parameter-effects curvature array contains all information necessary to construct curvature measures for parameter subsets.

Citation

Download Citation

R. Dennis Cook. Miriam L. Goldberg. "Curvatures for Parameter Subsets in Nonlinear Regression." Ann. Statist. 14 (4) 1399 - 1418, December, 1986. https://doi.org/10.1214/aos/1176350166

Information

Published: December, 1986
First available in Project Euclid: 12 April 2007

zbMATH: 0651.62060
MathSciNet: MR868308
Digital Object Identifier: 10.1214/aos/1176350166

Subjects:
Primary: 62J02
Secondary: 62F25

Keywords: Confidence regions , curvature measures , Fieller-Creasy problem , least squares , likelihood

Rights: Copyright © 1986 Institute of Mathematical Statistics

Vol.14 • No. 4 • December, 1986
Back to Top