Abstract
The relative curvature measures of nonlinearity proposed by Bates and Watts (1980) are extended to an arbitrary subset of the parameters in a normal, nonlinear regression model. In particular, the subset curvatures proposed indicate the validity of linearization-based approximate confidence intervals for single parameters. The derivation produces the original Bates-Watts measures directly from the likelihood function. When the intrinsic curvature is negligible, the Bates-Watts parameter-effects curvature array contains all information necessary to construct curvature measures for parameter subsets.
Citation
R. Dennis Cook. Miriam L. Goldberg. "Curvatures for Parameter Subsets in Nonlinear Regression." Ann. Statist. 14 (4) 1399 - 1418, December, 1986. https://doi.org/10.1214/aos/1176350166
Information