Open Access
June, 1986 Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series
Robert Fox, Murad S. Taqqu
Ann. Statist. 14(2): 517-532 (June, 1986). DOI: 10.1214/aos/1176349936

Abstract

A strongly dependent Gaussian sequence has a spectral density $f(x, \theta)$ satisfying $f(x, \theta) \sim |x|^{-\alpha(\theta)} L_\theta(x)$ as $x \rightarrow 0$, where $0 < \alpha(\theta) < 1$ and $L_\theta(x)$ varies slowly at 0. Here $\theta$ is a vector of unknown parameters. An estimator for $\theta$ is proposed and shown to be consistent and asymptotically normal under appropriate conditions. These conditions are satisfied by fractional Gaussian noise and fractional ARMA, two examples of strongly dependent sequences.

Citation

Download Citation

Robert Fox. Murad S. Taqqu. "Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series." Ann. Statist. 14 (2) 517 - 532, June, 1986. https://doi.org/10.1214/aos/1176349936

Information

Published: June, 1986
First available in Project Euclid: 12 April 2007

zbMATH: 0606.62096
MathSciNet: MR840512
Digital Object Identifier: 10.1214/aos/1176349936

Subjects:
Primary: 62F12
Secondary: 60F99 , 62M10

Keywords: fractional ARMA , fractional Gaussian noise , long-range dependence , maximum likelihood estimation , Strong dependence

Rights: Copyright © 1986 Institute of Mathematical Statistics

Vol.14 • No. 2 • June, 1986
Back to Top