Abstract
Let $X_1, X_2, \cdots$ be i.i.d. random variables with mean $\theta$ and finite, positive variance $\sigma^2,$ depending on unknown parameters $\omega\in\Omega.$ The problem addressed is that of finding a stopping time $t$ for which the risk $R_A(t, \omega) = E_\omega\{A \gamma^2_0(\omega)(\bar{X}_t - \theta)^2 + t\}$ is as small as possible (in a suitable sense), where $A > 0, \gamma_0$ is a positive function on $\Omega$, and $\bar{X}_t = (X_1 + \cdots + X_t)/t.$ For fixed (nonrandom) sample sizes, $2 \sqrt{A}(\gamma_0\sigma)$ is a lower bound for $R_A(n, \omega), n \geq 1$; and the regret of a stopping time $t$ is defined to be $r_A(t, \omega) = R_A(t, \omega) - 2\sqrt{A}(\gamma_0 \sigma).$ The main results determine an asymptotic lower bound, as $A \rightarrow\infty,$ for the minimax regret $M_A(\Omega_0) = \inf_t\sup_{\omega\in\Omega_0}r_A(t, \omega)$ for neighborhoods $\Omega_0$ of arbitrary parameter points $\omega_0 \in \Omega.$ The bound is obtained for multiparameter exponential families and the nonparametric case. The bound is attained asymptotically by an intuitive procedure in several special cases.
Citation
Michael Woodroofe. "Asymptotic Local Minimaxity in Sequential Point Estimation." Ann. Statist. 13 (2) 676 - 688, June, 1985. https://doi.org/10.1214/aos/1176349547
Information