Open Access
March, 1985 The Admissibility of the Empirical Distribution Function
Michael P. Cohen, Lynn Kuo
Ann. Statist. 13(1): 262-271 (March, 1985). DOI: 10.1214/aos/1176346591

Abstract

Consider the problem of estimating an unknown distribution function $F$ from the class of all distribution functions given a random sample of size $n$ from $F$. It is proved that the empirical distribution function is admissible for the loss functions $L(F, \hat{F}) = \int (\hat{F}(t) - F(t))^2(F(t))^\alpha(1 - F(t))^b dW(t)$ for any $a < 1$ and $b < 1$ and finite measure $W$. Related results for simultaneous estimation of distribution functions and for finite population sampling are also given.

Citation

Download Citation

Michael P. Cohen. Lynn Kuo. "The Admissibility of the Empirical Distribution Function." Ann. Statist. 13 (1) 262 - 271, March, 1985. https://doi.org/10.1214/aos/1176346591

Information

Published: March, 1985
First available in Project Euclid: 12 April 2007

zbMATH: 0575.62011
MathSciNet: MR773166
Digital Object Identifier: 10.1214/aos/1176346591

Subjects:
Primary: 62C15
Secondary: 62D05 , 62G30

Keywords: Admissibility , Empirical distribution function , finite population , i.i.d. sample , multinomial distribution , simple random sampling without replacement , weighted quadratic loss

Rights: Copyright © 1985 Institute of Mathematical Statistics

Vol.13 • No. 1 • March, 1985
Back to Top