Open Access
December, 1984 Distribution-Free Lower Bounds in Density Estimation
Luc Devroye, Clark S. Penrod
Ann. Statist. 12(4): 1250-1262 (December, 1984). DOI: 10.1214/aos/1176346790

Abstract

We consider the kernel estimate on the real line, $f_n(x) = (nh)^{-1} \sum^n_{i=1} K((X_i - x)/h),$ where $K$ is a bounded even density with compact support, and $X_1, \cdots, X_n$ are independent random variables with common density $f$. We treat the problem of placing a lower bound on the $L$1 error $J_n = E(\int |f_n - f|)$ which holds for all $f$. In particular, we show that there exist $A(K) \geq (9/125)^{1/5}$ depending only upon $K$, and $B^\ast(f) \geq 1$ depending only upon $f$ such that (i) for all $f:\inf_{h > 0}n^{2/5}J_n \geq CA(K)B^\ast(f) + o(1) \geq 0.6076703\cdots + o(1)$ where $C = 1.028493\cdots$ is a universal constant; (ii) for all $f$ with compact support and two bounded continuous absolutely integrable derivatives, $\inf_{h > 0}n^{2/5}J_n \leq C^\ast A(K)B^\ast(f) + o(1)$ where $C^\ast = 1.3768102\cdots$ is another universal constant. For this class of densities, we also obtain the exact asymptotic behavior of $J_n$.

Citation

Download Citation

Luc Devroye. Clark S. Penrod. "Distribution-Free Lower Bounds in Density Estimation." Ann. Statist. 12 (4) 1250 - 1262, December, 1984. https://doi.org/10.1214/aos/1176346790

Information

Published: December, 1984
First available in Project Euclid: 12 April 2007

zbMATH: 0551.62024
MathSciNet: MR760686
Digital Object Identifier: 10.1214/aos/1176346790

Subjects:
Primary: 62G05
Secondary: 60F15

Keywords: Density estimation , kernel estimate , lower bounds , nonparametric methods , weak convergence

Rights: Copyright © 1984 Institute of Mathematical Statistics

Vol.12 • No. 4 • December, 1984
Back to Top