Translator Disclaimer
May, 1973 On Consistency in Monotonic Regression
D. L. Hanson, Gordon Pledger, F. T. Wright
Ann. Statist. 1(3): 401-421 (May, 1973). DOI: 10.1214/aos/1176342407

Abstract

For each $t$ in some subset $T$ of $N$-dimensional Euclidean space let $F_t$ be a distribution function with mean $m(t)$. Suppose $m(t)$ is non-decreasing in each of the coordinates of $t$. Let $t_1, t_2,\cdots$ be a sequence of points in $T$ and let $Y_1, Y_2,\cdots$ be an independent sequence of random variables such that the distribution function of $Y_k$ is $F_{t_k}$. Estimators $\hat{m}_n(t; Y_1,\cdots, Y_n)$ of $m(t)$ which are monotone in each coordinate of $t$ and which minimize $\sum^n_{i=1} \lbrack\hat{m}_n(t_i; Y_1,\cdots, Y_n) - Y_i\rbrack^2$ are already known. Brunk has investigated their consistency when $N = 1$. In this paper additional consistency results are obtained when $N = 1$ and some results are obtained in the case $N = 2$. In addition, we prove several lemmas about the law of large numbers which we believe to be of independent interest.

Citation

Download Citation

D. L. Hanson. Gordon Pledger. F. T. Wright. "On Consistency in Monotonic Regression." Ann. Statist. 1 (3) 401 - 421, May, 1973. https://doi.org/10.1214/aos/1176342407

Information

Published: May, 1973
First available in Project Euclid: 12 April 2007

zbMATH: 0259.62037
MathSciNet: MR353540
Digital Object Identifier: 10.1214/aos/1176342407

Subjects:
Primary: 62G05
Secondary: 60G50

Rights: Copyright © 1973 Institute of Mathematical Statistics

JOURNAL ARTICLE
21 PAGES


SHARE
Vol.1 • No. 3 • May, 1973
Back to Top