Open Access
April, 1981 Borel Sets Via Games
D. Blackwell
Ann. Probab. 9(2): 321-322 (April, 1981). DOI: 10.1214/aop/1176994474


A family of games $G = G(\sigma, u)$ is defined such that (a) for each $\sigma$ the set of all $u$ for which Player I can force a win in $G(\sigma, u)$ is a Borel set $B(u)$ and (b) every Borel set is a $B(u)$ for some $u$.


Download Citation

D. Blackwell. "Borel Sets Via Games." Ann. Probab. 9 (2) 321 - 322, April, 1981.


Published: April, 1981
First available in Project Euclid: 19 April 2007

zbMATH: 0455.28002
MathSciNet: MR606995
Digital Object Identifier: 10.1214/aop/1176994474

Primary: 28A05
Secondary: 02K30

Keywords: Borel sets , games , stop rules

Rights: Copyright © 1981 Institute of Mathematical Statistics

Vol.9 • No. 2 • April, 1981
Back to Top