Abstract
Let $\{n_k, k \geqq 1\}$ be a sequence of random variables uniformly distributed over $\{0, 1\}$ and let $F_N(t)$ be the empirical distribution function at stage $N$. Put $f_n(t) = N(F_N(t) - t)(N\log\log N)^{-\frac{1}{2}}, 0 \leqq t \leqq 1, N \geqq 3$. For strictly stationary sequences $\{n_k\}$ where $n_k$ is a function of random variables satisfying a strong mixing condition or where $n_k = n_k x \mod 1$ with $\{n_k, k \geqq 1\}$ a lacunary sequence of real numbers a functional law of the iterated longarithm is proven: The sequence $\{f_N(t), N \geqq 3\}$ is with probability 1 relatively compact in $D\lbrack 0, 1\rbrack$ and the set of its limits is the unit ball in the reproducing kernel Hilbert space associated with the covariance function of the appropriate Gaussian process.
Citation
Walter Philipp. "A Functional Law of the Iterated Logarithm for Empirical Distribution Functions of Weakly Dependent Random Variables." Ann. Probab. 5 (3) 319 - 350, June, 1977. https://doi.org/10.1214/aop/1176995795
Information