Abstract
Two probability distributions $\mu$ and $\nu$ in second stochastic order can be coupled by a supermartingale, and in fact by many. Is there a canonical choice? We construct and investigate two couplings which arise as optimizers for constrained Monge–Kantorovich optimal transport problems where only supermartingales are allowed as transports. Much like the Hoeffding–Fréchet coupling of classical transport and its symmetric counterpart, the antitone coupling, these can be characterized by order-theoretic minimality properties, as simultaneous optimal transports for certain classes of reward (or cost) functions, and through no-crossing conditions on their supports; however, our two couplings have asymmetric geometries. Remarkably, supermartingale optimal transport decomposes into classical and martingale transport in several ways.
Citation
Marcel Nutz. Florian Stebegg. "Canonical supermartingale couplings." Ann. Probab. 46 (6) 3351 - 3398, November 2018. https://doi.org/10.1214/17-AOP1249
Information